Walkthrough 6: Exploring relationships using social network analysis with social media data
This chapter explores the use of social network analysis (commonly referred to as SNA). While much of the data that data scientists in education analyze pertains to variables for individuals, some data concerns the relationships between individuals, such as friendship between youth, or advice-seekin...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | |
container_start_page | 179 |
container_title | |
container_volume | |
creator | Estrellado, Ryan A. Freer, Emily A. Mostipak, Jesse Rosenberg, Joshua M. Velásquez, Isabella C. |
description | This chapter explores the use of social network analysis (commonly referred to as SNA). While much of the data that data scientists in education analyze pertains to variables for individuals, some data concerns the relationships between individuals, such as friendship between youth, or advice-seeking on the part of teachers. While such data is common—and often of interest to data scientists—it can be difficult to analyze, in part due to the multiple sources of data (about both individuals’ relations and individuals and the complexity of the relations between individuals. This chapter uses data from the Twitter #tidyuesday network, an R learning community, to demonstrate how such data can be accessed and imported, processed into forms necessary for social network analysis using the {tidygraph} R package, and visualized using the {ggraph} R package. |
doi_str_mv | 10.4324/9780367822842-12 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_6326224_20_192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6326224_20_192</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1092-23d160862bb2d9ef5b8d149aa00e6397a7b91675b5dcc43d8fe8612228ed6f143</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhI0QCCi5c-QFArtrxz9HVAGtVIkLiKNlJw6NGuJipyDenpRy4TTa0cyn1TB2hXAjOIlbozRwqTSRFlQiHbFishAACEAjHf_e-4ggokqdsgtEw5FkBfqMFTl3HgQJVEriOSteXb8Z1ynu3tbX8pKdtK7PofjTGXt5uH-eL8rV0-NyfrcqOwRDJfEGJWhJ3lNjQlt53aAwzgEEyY1yyhuUqvJVU9eCN7oNWuL0jg6NbFHwGeMH7jbFj13Iow0-xk0dhjG5vl677RhStpKTJBKWwKKhqbU4tLqhjendfcXUN3Z0331MbXJD3eU9JVsEu9_K_tvKItnPidrFgfgP9ztafA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6326224_20_192</pqid></control><display><type>book_chapter</type><title>Walkthrough 6: Exploring relationships using social network analysis with social media data</title><source>Ebook Central - Academic Complete</source><creator>Estrellado, Ryan A. ; Freer, Emily A. ; Mostipak, Jesse ; Rosenberg, Joshua M. ; Velásquez, Isabella C.</creator><creatorcontrib>Estrellado, Ryan A. ; Freer, Emily A. ; Mostipak, Jesse ; Rosenberg, Joshua M. ; Velásquez, Isabella C.</creatorcontrib><description>This chapter explores the use of social network analysis (commonly referred to as SNA). While much of the data that data scientists in education analyze pertains to variables for individuals, some data concerns the relationships between individuals, such as friendship between youth, or advice-seeking on the part of teachers. While such data is common—and often of interest to data scientists—it can be difficult to analyze, in part due to the multiple sources of data (about both individuals’ relations and individuals and the complexity of the relations between individuals. This chapter uses data from the Twitter #tidyuesday network, an R learning community, to demonstrate how such data can be accessed and imported, processed into forms necessary for social network analysis using the {tidygraph} R package, and visualized using the {ggraph} R package.</description><edition>1</edition><identifier>ISBN: 9780367422257</identifier><identifier>ISBN: 0367422255</identifier><identifier>ISBN: 0367422247</identifier><identifier>ISBN: 9780367422240</identifier><identifier>EISBN: 9781000200812</identifier><identifier>EISBN: 9781000200904</identifier><identifier>EISBN: 1000200906</identifier><identifier>EISBN: 0367822849</identifier><identifier>EISBN: 9781000200720</identifier><identifier>EISBN: 1000200728</identifier><identifier>EISBN: 9780367822842</identifier><identifier>EISBN: 1000200817</identifier><identifier>DOI: 10.4324/9780367822842-12</identifier><identifier>OCLC: 1193126508</identifier><identifier>LCCallNum: LB2846$b.E887 2021</identifier><language>eng</language><publisher>United Kingdom: Routledge</publisher><ispartof>Data Science in Education Using R, 2021, p.179-189</ispartof><rights>2021 Ryan A. Estrellado, Emily A. Freer, Jesse Mostipak, Joshua M. Rosenberg and Isabella C. Velásquez</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6326224-l.jpg</thumbnail><link.rule.ids>779,780,784,793,27925</link.rule.ids></links><search><creatorcontrib>Estrellado, Ryan A.</creatorcontrib><creatorcontrib>Freer, Emily A.</creatorcontrib><creatorcontrib>Mostipak, Jesse</creatorcontrib><creatorcontrib>Rosenberg, Joshua M.</creatorcontrib><creatorcontrib>Velásquez, Isabella C.</creatorcontrib><title>Walkthrough 6: Exploring relationships using social network analysis with social media data</title><title>Data Science in Education Using R</title><description>This chapter explores the use of social network analysis (commonly referred to as SNA). While much of the data that data scientists in education analyze pertains to variables for individuals, some data concerns the relationships between individuals, such as friendship between youth, or advice-seeking on the part of teachers. While such data is common—and often of interest to data scientists—it can be difficult to analyze, in part due to the multiple sources of data (about both individuals’ relations and individuals and the complexity of the relations between individuals. This chapter uses data from the Twitter #tidyuesday network, an R learning community, to demonstrate how such data can be accessed and imported, processed into forms necessary for social network analysis using the {tidygraph} R package, and visualized using the {ggraph} R package.</description><isbn>9780367422257</isbn><isbn>0367422255</isbn><isbn>0367422247</isbn><isbn>9780367422240</isbn><isbn>9781000200812</isbn><isbn>9781000200904</isbn><isbn>1000200906</isbn><isbn>0367822849</isbn><isbn>9781000200720</isbn><isbn>1000200728</isbn><isbn>9780367822842</isbn><isbn>1000200817</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2021</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkM1OwzAQhI0QCCi5c-QFArtrxz9HVAGtVIkLiKNlJw6NGuJipyDenpRy4TTa0cyn1TB2hXAjOIlbozRwqTSRFlQiHbFishAACEAjHf_e-4ggokqdsgtEw5FkBfqMFTl3HgQJVEriOSteXb8Z1ynu3tbX8pKdtK7PofjTGXt5uH-eL8rV0-NyfrcqOwRDJfEGJWhJ3lNjQlt53aAwzgEEyY1yyhuUqvJVU9eCN7oNWuL0jg6NbFHwGeMH7jbFj13Iow0-xk0dhjG5vl677RhStpKTJBKWwKKhqbU4tLqhjendfcXUN3Z0331MbXJD3eU9JVsEu9_K_tvKItnPidrFgfgP9ztafA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Estrellado, Ryan A.</creator><creator>Freer, Emily A.</creator><creator>Mostipak, Jesse</creator><creator>Rosenberg, Joshua M.</creator><creator>Velásquez, Isabella C.</creator><general>Routledge</general><general>Taylor & Francis Group</general><scope>FFUUA</scope></search><sort><creationdate>2021</creationdate><title>Walkthrough 6</title><author>Estrellado, Ryan A. ; Freer, Emily A. ; Mostipak, Jesse ; Rosenberg, Joshua M. ; Velásquez, Isabella C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1092-23d160862bb2d9ef5b8d149aa00e6397a7b91675b5dcc43d8fe8612228ed6f143</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Estrellado, Ryan A.</creatorcontrib><creatorcontrib>Freer, Emily A.</creatorcontrib><creatorcontrib>Mostipak, Jesse</creatorcontrib><creatorcontrib>Rosenberg, Joshua M.</creatorcontrib><creatorcontrib>Velásquez, Isabella C.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estrellado, Ryan A.</au><au>Freer, Emily A.</au><au>Mostipak, Jesse</au><au>Rosenberg, Joshua M.</au><au>Velásquez, Isabella C.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Walkthrough 6: Exploring relationships using social network analysis with social media data</atitle><btitle>Data Science in Education Using R</btitle><date>2021</date><risdate>2021</risdate><spage>179</spage><epage>189</epage><pages>179-189</pages><isbn>9780367422257</isbn><isbn>0367422255</isbn><isbn>0367422247</isbn><isbn>9780367422240</isbn><eisbn>9781000200812</eisbn><eisbn>9781000200904</eisbn><eisbn>1000200906</eisbn><eisbn>0367822849</eisbn><eisbn>9781000200720</eisbn><eisbn>1000200728</eisbn><eisbn>9780367822842</eisbn><eisbn>1000200817</eisbn><abstract>This chapter explores the use of social network analysis (commonly referred to as SNA). While much of the data that data scientists in education analyze pertains to variables for individuals, some data concerns the relationships between individuals, such as friendship between youth, or advice-seeking on the part of teachers. While such data is common—and often of interest to data scientists—it can be difficult to analyze, in part due to the multiple sources of data (about both individuals’ relations and individuals and the complexity of the relations between individuals. This chapter uses data from the Twitter #tidyuesday network, an R learning community, to demonstrate how such data can be accessed and imported, processed into forms necessary for social network analysis using the {tidygraph} R package, and visualized using the {ggraph} R package.</abstract><cop>United Kingdom</cop><pub>Routledge</pub><doi>10.4324/9780367822842-12</doi><oclcid>1193126508</oclcid><tpages>11</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9780367422257 |
ispartof | Data Science in Education Using R, 2021, p.179-189 |
issn | |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_6326224_20_192 |
source | Ebook Central - Academic Complete |
title | Walkthrough 6: Exploring relationships using social network analysis with social media data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Walkthrough%206:%20Exploring%20relationships%20using%20social%20network%20analysis%20with%20social%20media%20data&rft.btitle=Data%20Science%20in%20Education%20Using%20R&rft.au=Estrellado,%20Ryan%20A.&rft.date=2021&rft.spage=179&rft.epage=189&rft.pages=179-189&rft.isbn=9780367422257&rft.isbn_list=0367422255&rft.isbn_list=0367422247&rft.isbn_list=9780367422240&rft_id=info:doi/10.4324/9780367822842-12&rft_dat=%3Cproquest_infor%3EEBC6326224_20_192%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781000200812&rft.eisbn_list=9781000200904&rft.eisbn_list=1000200906&rft.eisbn_list=0367822849&rft.eisbn_list=9781000200720&rft.eisbn_list=1000200728&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6326224_20_192&rft_id=info:pmid/&rfr_iscdi=true |