Walkthrough 3: Using school-level aggregate data to illuminate educational inequities

This chapter explores cleaning, tidying, joining, and visualizing publicly available aggregate data. Data scientists in education frequently work with public aggregate data when student-level data is not available. By working with these data, data scientists in education can discover broader trends...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Estrellado, Ryan A., Freer, Emily A., Mostipak, Jesse, Rosenberg, Joshua M., Velásquez, Isabella C.
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue
container_start_page 109
container_title
container_volume
creator Estrellado, Ryan A.
Freer, Emily A.
Mostipak, Jesse
Rosenberg, Joshua M.
Velásquez, Isabella C.
description This chapter explores cleaning, tidying, joining, and visualizing publicly available aggregate data. Data scientists in education frequently work with public aggregate data when student-level data is not available. By working with these data, data scientists in education can discover broader trends and underlying patterns. If aggregate data is disaggregated by subgroups or subpopulations, data scientists can reveal areas of inequity for marginalized populations. Using a freely available district dataset, this chapter looks at the distribution of students in the district by race and socioeconomic status. Subgroup analysis can point out the state of equity in a system to inform how to improve the situation for more equitable opportunities for students. Data science techniques in this chapter include reading tables from an online PDF into a machine-readable format, preparing data for analysis, transforming it into a tidy format, visualizing it, and analyzing distributions and relationships.
doi_str_mv 10.4324/9780367822842-9
format Book Chapter
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_6326224_17_122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6326224_17_122</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1082-1d247b07e90823f2f99a63b88a78bbdc35eca47a7fabcf32b3f1f35a8a7d351e3</originalsourceid><addsrcrecordid>eNpVkMFOwzAQRI0QCCg5c-UHAt5dJ7aPqIIWqRIXEEfLTmwaNcTFTkH8PSnlwmk0szvvMIxdAb8RhOJWS8WplgpRCSz1ESumBDjnyLkCPP71-w-BiJU8ZRcAmgDriqszVuTcOS5QgJQ1nLPi1fabcZ3i7m19TZfsJNg---JPZ-zl4f55vixXT4vH-d2q7IArLKFFIR2XXk-OAgatbU1OKSuVc21DlW-skFYG65pA6ChAoMpO95Yq8DRjdOBuU_zY-Twa72LcNH4Yk-2btd2OPmVTE9aIwoA0gDi1FodWN4SY3u1XTH1rRvvdxxSSHZou7ynZADf7qcy_qYw2nxO0iwPSD-haWws</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6326224_17_122</pqid></control><display><type>book_chapter</type><title>Walkthrough 3: Using school-level aggregate data to illuminate educational inequities</title><source>Ebook Central - Academic Complete</source><creator>Estrellado, Ryan A. ; Freer, Emily A. ; Mostipak, Jesse ; Rosenberg, Joshua M. ; Velásquez, Isabella C.</creator><creatorcontrib>Estrellado, Ryan A. ; Freer, Emily A. ; Mostipak, Jesse ; Rosenberg, Joshua M. ; Velásquez, Isabella C.</creatorcontrib><description>This chapter explores cleaning, tidying, joining, and visualizing publicly available aggregate data. Data scientists in education frequently work with public aggregate data when student-level data is not available. By working with these data, data scientists in education can discover broader trends and underlying patterns. If aggregate data is disaggregated by subgroups or subpopulations, data scientists can reveal areas of inequity for marginalized populations. Using a freely available district dataset, this chapter looks at the distribution of students in the district by race and socioeconomic status. Subgroup analysis can point out the state of equity in a system to inform how to improve the situation for more equitable opportunities for students. Data science techniques in this chapter include reading tables from an online PDF into a machine-readable format, preparing data for analysis, transforming it into a tidy format, visualizing it, and analyzing distributions and relationships.</description><edition>1</edition><identifier>ISBN: 9780367422257</identifier><identifier>ISBN: 0367422255</identifier><identifier>ISBN: 0367422247</identifier><identifier>ISBN: 9780367422240</identifier><identifier>EISBN: 9781000200812</identifier><identifier>EISBN: 9781000200904</identifier><identifier>EISBN: 1000200906</identifier><identifier>EISBN: 0367822849</identifier><identifier>EISBN: 9781000200720</identifier><identifier>EISBN: 1000200728</identifier><identifier>EISBN: 9780367822842</identifier><identifier>EISBN: 1000200817</identifier><identifier>DOI: 10.4324/9780367822842-9</identifier><identifier>OCLC: 1193126508</identifier><identifier>LCCallNum: LB2846$b.E887 2021</identifier><language>eng</language><publisher>United Kingdom: Routledge</publisher><ispartof>Data Science in Education Using R, 2021, p.109-126</ispartof><rights>2021 Ryan A. Estrellado, Emily A. Freer, Jesse Mostipak, Joshua M. Rosenberg and Isabella C. Velásquez</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6326224-l.jpg</thumbnail><link.rule.ids>779,780,784,793,27925</link.rule.ids></links><search><creatorcontrib>Estrellado, Ryan A.</creatorcontrib><creatorcontrib>Freer, Emily A.</creatorcontrib><creatorcontrib>Mostipak, Jesse</creatorcontrib><creatorcontrib>Rosenberg, Joshua M.</creatorcontrib><creatorcontrib>Velásquez, Isabella C.</creatorcontrib><title>Walkthrough 3: Using school-level aggregate data to illuminate educational inequities</title><title>Data Science in Education Using R</title><description>This chapter explores cleaning, tidying, joining, and visualizing publicly available aggregate data. Data scientists in education frequently work with public aggregate data when student-level data is not available. By working with these data, data scientists in education can discover broader trends and underlying patterns. If aggregate data is disaggregated by subgroups or subpopulations, data scientists can reveal areas of inequity for marginalized populations. Using a freely available district dataset, this chapter looks at the distribution of students in the district by race and socioeconomic status. Subgroup analysis can point out the state of equity in a system to inform how to improve the situation for more equitable opportunities for students. Data science techniques in this chapter include reading tables from an online PDF into a machine-readable format, preparing data for analysis, transforming it into a tidy format, visualizing it, and analyzing distributions and relationships.</description><isbn>9780367422257</isbn><isbn>0367422255</isbn><isbn>0367422247</isbn><isbn>9780367422240</isbn><isbn>9781000200812</isbn><isbn>9781000200904</isbn><isbn>1000200906</isbn><isbn>0367822849</isbn><isbn>9781000200720</isbn><isbn>1000200728</isbn><isbn>9780367822842</isbn><isbn>1000200817</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2021</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkMFOwzAQRI0QCCg5c-UHAt5dJ7aPqIIWqRIXEEfLTmwaNcTFTkH8PSnlwmk0szvvMIxdAb8RhOJWS8WplgpRCSz1ESumBDjnyLkCPP71-w-BiJU8ZRcAmgDriqszVuTcOS5QgJQ1nLPi1fabcZ3i7m19TZfsJNg---JPZ-zl4f55vixXT4vH-d2q7IArLKFFIR2XXk-OAgatbU1OKSuVc21DlW-skFYG65pA6ChAoMpO95Yq8DRjdOBuU_zY-Twa72LcNH4Yk-2btd2OPmVTE9aIwoA0gDi1FodWN4SY3u1XTH1rRvvdxxSSHZou7ynZADf7qcy_qYw2nxO0iwPSD-haWws</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Estrellado, Ryan A.</creator><creator>Freer, Emily A.</creator><creator>Mostipak, Jesse</creator><creator>Rosenberg, Joshua M.</creator><creator>Velásquez, Isabella C.</creator><general>Routledge</general><general>Taylor &amp; Francis Group</general><scope>FFUUA</scope></search><sort><creationdate>2021</creationdate><title>Walkthrough 3</title><author>Estrellado, Ryan A. ; Freer, Emily A. ; Mostipak, Jesse ; Rosenberg, Joshua M. ; Velásquez, Isabella C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1082-1d247b07e90823f2f99a63b88a78bbdc35eca47a7fabcf32b3f1f35a8a7d351e3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Estrellado, Ryan A.</creatorcontrib><creatorcontrib>Freer, Emily A.</creatorcontrib><creatorcontrib>Mostipak, Jesse</creatorcontrib><creatorcontrib>Rosenberg, Joshua M.</creatorcontrib><creatorcontrib>Velásquez, Isabella C.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estrellado, Ryan A.</au><au>Freer, Emily A.</au><au>Mostipak, Jesse</au><au>Rosenberg, Joshua M.</au><au>Velásquez, Isabella C.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Walkthrough 3: Using school-level aggregate data to illuminate educational inequities</atitle><btitle>Data Science in Education Using R</btitle><date>2021</date><risdate>2021</risdate><spage>109</spage><epage>126</epage><pages>109-126</pages><isbn>9780367422257</isbn><isbn>0367422255</isbn><isbn>0367422247</isbn><isbn>9780367422240</isbn><eisbn>9781000200812</eisbn><eisbn>9781000200904</eisbn><eisbn>1000200906</eisbn><eisbn>0367822849</eisbn><eisbn>9781000200720</eisbn><eisbn>1000200728</eisbn><eisbn>9780367822842</eisbn><eisbn>1000200817</eisbn><abstract>This chapter explores cleaning, tidying, joining, and visualizing publicly available aggregate data. Data scientists in education frequently work with public aggregate data when student-level data is not available. By working with these data, data scientists in education can discover broader trends and underlying patterns. If aggregate data is disaggregated by subgroups or subpopulations, data scientists can reveal areas of inequity for marginalized populations. Using a freely available district dataset, this chapter looks at the distribution of students in the district by race and socioeconomic status. Subgroup analysis can point out the state of equity in a system to inform how to improve the situation for more equitable opportunities for students. Data science techniques in this chapter include reading tables from an online PDF into a machine-readable format, preparing data for analysis, transforming it into a tidy format, visualizing it, and analyzing distributions and relationships.</abstract><cop>United Kingdom</cop><pub>Routledge</pub><doi>10.4324/9780367822842-9</doi><oclcid>1193126508</oclcid><tpages>18</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISBN: 9780367422257
ispartof Data Science in Education Using R, 2021, p.109-126
issn
language eng
recordid cdi_proquest_ebookcentralchapters_6326224_17_122
source Ebook Central - Academic Complete
title Walkthrough 3: Using school-level aggregate data to illuminate educational inequities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Walkthrough%203:%20Using%20school-level%20aggregate%20data%20to%20illuminate%20educational%20inequities&rft.btitle=Data%20Science%20in%20Education%20Using%20R&rft.au=Estrellado,%20Ryan%20A.&rft.date=2021&rft.spage=109&rft.epage=126&rft.pages=109-126&rft.isbn=9780367422257&rft.isbn_list=0367422255&rft.isbn_list=0367422247&rft.isbn_list=9780367422240&rft_id=info:doi/10.4324/9780367822842-9&rft_dat=%3Cproquest_infor%3EEBC6326224_17_122%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781000200812&rft.eisbn_list=9781000200904&rft.eisbn_list=1000200906&rft.eisbn_list=0367822849&rft.eisbn_list=9781000200720&rft.eisbn_list=1000200728&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6326224_17_122&rft_id=info:pmid/&rfr_iscdi=true