Walkthrough 1: The education data science pipeline with online science class data

This chapter explores tidying and transforming data from online K–12 science courses. Particularly for those carrying out educational research or evaluation, data from online courses and learning management systems (LMS) is commonly analyzed by data scientists in education and those involved in lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Estrellado, Ryan A., Freer, Emily A., Mostipak, Jesse, Rosenberg, Joshua M., Velásquez, Isabella C.
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue
container_start_page 61
container_title
container_volume
creator Estrellado, Ryan A.
Freer, Emily A.
Mostipak, Jesse
Rosenberg, Joshua M.
Velásquez, Isabella C.
description This chapter explores tidying and transforming data from online K–12 science courses. Particularly for those carrying out educational research or evaluation, data from online courses and learning management systems (LMS) is commonly analyzed by data scientists in education and those involved in learning analytics. A feature—but also a challenge—of this type of data, which comes from both surveys as well as measures of students’ interactions with course content (i.e., “trace” measures), is that it often requires substantial time and effort before it can be described, visualized, and modeled. This type of analysis can be useful for understanding students’ experiences in online courses; it can also be used as a part of a process of providing feedback to teachers and students, as is commonly the case with learning analytics approaches. Data science tools in this chapter include joining together different datasets, pivoting data from “long” to “wide” form (and vice versa), and exploring data through visualizations, correlations, and regression models.
doi_str_mv 10.4324/9780367822842-7
format Book Chapter
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_6326224_15_74</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6326224_15_74</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1074-c3796ed6f419bd824c937dd748b6159da5cfec40cfc1f02a6c34754371deb9a23</originalsourceid><addsrcrecordid>eNpVkD9PwzAUxI0QCCiZWfkCAb_nFzseUQUFCYkFxGg5_kOjhrjYKYhvT0tZmE53uvsNx9gF8CsSSNdatVxI1SK2hLU6YNU2Ac45ct4CHv76XYMQsVHH7AxAC0DZ8PaEVaX0HSckUErCKate7bCaljlt3paXcM6Ooh1KqP50xl7ubp_n9_Xj0-JhfvNY98AV1U4oLYOXkUB3vkVyWijvFbWdhEZ727gYHHEXHUSOVjpBqiGhwIdOWxQzhnvuOqePTSiTCV1KKxfGKdvBLe16CrkYKVAikoHGKNqOFvtRP8aU3-1XyoM3k_0eUo7Zjq4vO0gxwM3uKfPvKaPM55bZpxHFD2_eWoY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6326224_15_74</pqid></control><display><type>book_chapter</type><title>Walkthrough 1: The education data science pipeline with online science class data</title><source>Ebook Central - Academic Complete</source><creator>Estrellado, Ryan A. ; Freer, Emily A. ; Mostipak, Jesse ; Rosenberg, Joshua M. ; Velásquez, Isabella C.</creator><creatorcontrib>Estrellado, Ryan A. ; Freer, Emily A. ; Mostipak, Jesse ; Rosenberg, Joshua M. ; Velásquez, Isabella C.</creatorcontrib><description>This chapter explores tidying and transforming data from online K–12 science courses. Particularly for those carrying out educational research or evaluation, data from online courses and learning management systems (LMS) is commonly analyzed by data scientists in education and those involved in learning analytics. A feature—but also a challenge—of this type of data, which comes from both surveys as well as measures of students’ interactions with course content (i.e., “trace” measures), is that it often requires substantial time and effort before it can be described, visualized, and modeled. This type of analysis can be useful for understanding students’ experiences in online courses; it can also be used as a part of a process of providing feedback to teachers and students, as is commonly the case with learning analytics approaches. Data science tools in this chapter include joining together different datasets, pivoting data from “long” to “wide” form (and vice versa), and exploring data through visualizations, correlations, and regression models.</description><edition>1</edition><identifier>ISBN: 9780367422257</identifier><identifier>ISBN: 0367422255</identifier><identifier>ISBN: 0367422247</identifier><identifier>ISBN: 9780367422240</identifier><identifier>EISBN: 9781000200812</identifier><identifier>EISBN: 9781000200904</identifier><identifier>EISBN: 1000200906</identifier><identifier>EISBN: 0367822849</identifier><identifier>EISBN: 9781000200720</identifier><identifier>EISBN: 1000200728</identifier><identifier>EISBN: 9780367822842</identifier><identifier>EISBN: 1000200817</identifier><identifier>DOI: 10.4324/9780367822842-7</identifier><identifier>OCLC: 1193126508</identifier><identifier>LCCallNum: LB2846$b.E887 2021</identifier><language>eng</language><publisher>United Kingdom: Routledge</publisher><ispartof>Data Science in Education Using R, 2021, p.61-92</ispartof><rights>2021 Ryan A. Estrellado, Emily A. Freer, Jesse Mostipak, Joshua M. Rosenberg and Isabella C. Velásquez</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6326224-l.jpg</thumbnail><link.rule.ids>777,778,782,791,27908</link.rule.ids></links><search><creatorcontrib>Estrellado, Ryan A.</creatorcontrib><creatorcontrib>Freer, Emily A.</creatorcontrib><creatorcontrib>Mostipak, Jesse</creatorcontrib><creatorcontrib>Rosenberg, Joshua M.</creatorcontrib><creatorcontrib>Velásquez, Isabella C.</creatorcontrib><title>Walkthrough 1: The education data science pipeline with online science class data</title><title>Data Science in Education Using R</title><description>This chapter explores tidying and transforming data from online K–12 science courses. Particularly for those carrying out educational research or evaluation, data from online courses and learning management systems (LMS) is commonly analyzed by data scientists in education and those involved in learning analytics. A feature—but also a challenge—of this type of data, which comes from both surveys as well as measures of students’ interactions with course content (i.e., “trace” measures), is that it often requires substantial time and effort before it can be described, visualized, and modeled. This type of analysis can be useful for understanding students’ experiences in online courses; it can also be used as a part of a process of providing feedback to teachers and students, as is commonly the case with learning analytics approaches. Data science tools in this chapter include joining together different datasets, pivoting data from “long” to “wide” form (and vice versa), and exploring data through visualizations, correlations, and regression models.</description><isbn>9780367422257</isbn><isbn>0367422255</isbn><isbn>0367422247</isbn><isbn>9780367422240</isbn><isbn>9781000200812</isbn><isbn>9781000200904</isbn><isbn>1000200906</isbn><isbn>0367822849</isbn><isbn>9781000200720</isbn><isbn>1000200728</isbn><isbn>9780367822842</isbn><isbn>1000200817</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2021</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkD9PwzAUxI0QCCiZWfkCAb_nFzseUQUFCYkFxGg5_kOjhrjYKYhvT0tZmE53uvsNx9gF8CsSSNdatVxI1SK2hLU6YNU2Ac45ct4CHv76XYMQsVHH7AxAC0DZ8PaEVaX0HSckUErCKate7bCaljlt3paXcM6Ooh1KqP50xl7ubp_n9_Xj0-JhfvNY98AV1U4oLYOXkUB3vkVyWijvFbWdhEZ727gYHHEXHUSOVjpBqiGhwIdOWxQzhnvuOqePTSiTCV1KKxfGKdvBLe16CrkYKVAikoHGKNqOFvtRP8aU3-1XyoM3k_0eUo7Zjq4vO0gxwM3uKfPvKaPM55bZpxHFD2_eWoY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Estrellado, Ryan A.</creator><creator>Freer, Emily A.</creator><creator>Mostipak, Jesse</creator><creator>Rosenberg, Joshua M.</creator><creator>Velásquez, Isabella C.</creator><general>Routledge</general><general>Taylor &amp; Francis Group</general><scope>FFUUA</scope></search><sort><creationdate>2021</creationdate><title>Walkthrough 1</title><author>Estrellado, Ryan A. ; Freer, Emily A. ; Mostipak, Jesse ; Rosenberg, Joshua M. ; Velásquez, Isabella C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1074-c3796ed6f419bd824c937dd748b6159da5cfec40cfc1f02a6c34754371deb9a23</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Estrellado, Ryan A.</creatorcontrib><creatorcontrib>Freer, Emily A.</creatorcontrib><creatorcontrib>Mostipak, Jesse</creatorcontrib><creatorcontrib>Rosenberg, Joshua M.</creatorcontrib><creatorcontrib>Velásquez, Isabella C.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estrellado, Ryan A.</au><au>Freer, Emily A.</au><au>Mostipak, Jesse</au><au>Rosenberg, Joshua M.</au><au>Velásquez, Isabella C.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Walkthrough 1: The education data science pipeline with online science class data</atitle><btitle>Data Science in Education Using R</btitle><date>2021</date><risdate>2021</risdate><spage>61</spage><epage>92</epage><pages>61-92</pages><isbn>9780367422257</isbn><isbn>0367422255</isbn><isbn>0367422247</isbn><isbn>9780367422240</isbn><eisbn>9781000200812</eisbn><eisbn>9781000200904</eisbn><eisbn>1000200906</eisbn><eisbn>0367822849</eisbn><eisbn>9781000200720</eisbn><eisbn>1000200728</eisbn><eisbn>9780367822842</eisbn><eisbn>1000200817</eisbn><abstract>This chapter explores tidying and transforming data from online K–12 science courses. Particularly for those carrying out educational research or evaluation, data from online courses and learning management systems (LMS) is commonly analyzed by data scientists in education and those involved in learning analytics. A feature—but also a challenge—of this type of data, which comes from both surveys as well as measures of students’ interactions with course content (i.e., “trace” measures), is that it often requires substantial time and effort before it can be described, visualized, and modeled. This type of analysis can be useful for understanding students’ experiences in online courses; it can also be used as a part of a process of providing feedback to teachers and students, as is commonly the case with learning analytics approaches. Data science tools in this chapter include joining together different datasets, pivoting data from “long” to “wide” form (and vice versa), and exploring data through visualizations, correlations, and regression models.</abstract><cop>United Kingdom</cop><pub>Routledge</pub><doi>10.4324/9780367822842-7</doi><oclcid>1193126508</oclcid><tpages>32</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISBN: 9780367422257
ispartof Data Science in Education Using R, 2021, p.61-92
issn
language eng
recordid cdi_proquest_ebookcentralchapters_6326224_15_74
source Ebook Central - Academic Complete
title Walkthrough 1: The education data science pipeline with online science class data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Walkthrough%201:%20The%20education%20data%20science%20pipeline%20with%20online%20science%20class%20data&rft.btitle=Data%20Science%20in%20Education%20Using%20R&rft.au=Estrellado,%20Ryan%20A.&rft.date=2021&rft.spage=61&rft.epage=92&rft.pages=61-92&rft.isbn=9780367422257&rft.isbn_list=0367422255&rft.isbn_list=0367422247&rft.isbn_list=9780367422240&rft_id=info:doi/10.4324/9780367822842-7&rft_dat=%3Cproquest_infor%3EEBC6326224_15_74%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781000200812&rft.eisbn_list=9781000200904&rft.eisbn_list=1000200906&rft.eisbn_list=0367822849&rft.eisbn_list=9781000200720&rft.eisbn_list=1000200728&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6326224_15_74&rft_id=info:pmid/&rfr_iscdi=true