Nanomaterials for Enzyme Immobilization

Enzymes are natural and highly active biological molecules that increase the speed of catalytic reactions. They are used in various biotechnological and industrial areas due to their characteristics such as activity at diverse pHs and temperatures, easy production, high substrate specificity and sel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Arabacı, Nihan, Karaytuğ, Tuna, Demirbas, Ayse, Ocsoy, Ismail, Katı, Ahmet
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue
container_start_page 165
container_title
container_volume
creator Arabacı, Nihan
Karaytuğ, Tuna
Demirbas, Ayse
Ocsoy, Ismail
Katı, Ahmet
description Enzymes are natural and highly active biological molecules that increase the speed of catalytic reactions. They are used in various biotechnological and industrial areas due to their characteristics such as activity at diverse pHs and temperatures, easy production, high substrate specificity and selectivity, green chemistry, reusability, biodegradability, biocompatibility, etc. But the use of free enzymes can cause the activity to be lost during the industrial processes and decrease the product efficiency. The enzyme immobilization methods (conventional or new generation techniques) can prevent the loss of catalytic activity and product. Enzyme immobilization is a significant way for the entrapment of free or soluble enzymes to a solid insoluble matrix other than a substrate or product to create insoluble, reusable enzymes with high activity and stability. In this chapter, general information about enzymes, industrial application fields, enzyme demand in industrial sectors, the importance of enzyme immobilization, different immobilization methods, and the new generation hybrid nanoflowers (HNFs) are explained.
doi_str_mv 10.1002/9781119576785.ch7
format Book Chapter
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_6321337_117_185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6321337_117_185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243f-6c8182fb019b4954b00a9ff96867bdc316e492002b1834cc2439b2be91ac07253</originalsourceid><addsrcrecordid>eNptkE9LAzEQxSOiqLUfwFtvnrZmkmz-HKXUWih60XNI0oSu7m7W3RXpfnqzVAXFw2OY4f3eMIPQFeA5YExulJAAoHLBhcznbieO0MX3QJHjn0YCOx0bRYFwScUZmnbdC04RDEsp6Tm6fjB1rEzv28KU3SzEdrash33lZ-uqirYoi8H0Rawv0UlIBj_9qhP0fLd8Wtxnm8fVenG7yRxhNGTcSZAkWAzKMpUzi7FRISguubBbR4F7pkjab0FS5kZIWWK9AuOwIDmdoOyQ-1GUfq-9jfG107_u1UPR6HSzbrYh-eEfP2A9_ukPNzJJiWEHpmnj27vv-gPmfN23pnQ706R3dJpTApQKDZAkc_oJGu9pDg</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6321337_117_185</pqid></control><display><type>book_chapter</type><title>Nanomaterials for Enzyme Immobilization</title><source>Ebook Central Perpetual and DDA</source><creator>Arabacı, Nihan ; Karaytuğ, Tuna ; Demirbas, Ayse ; Ocsoy, Ismail ; Katı, Ahmet</creator><contributor>Gupta, Vijai Kumar ; Mishra, P. K ; Srivastava, Manish ; Srivastava, Neha ; Mishra, P. K ; Srivastava, Neha ; Srivastava, Manish ; Gupta, Vijai Kumar</contributor><creatorcontrib>Arabacı, Nihan ; Karaytuğ, Tuna ; Demirbas, Ayse ; Ocsoy, Ismail ; Katı, Ahmet ; Gupta, Vijai Kumar ; Mishra, P. K ; Srivastava, Manish ; Srivastava, Neha ; Mishra, P. K ; Srivastava, Neha ; Srivastava, Manish ; Gupta, Vijai Kumar</creatorcontrib><description>Enzymes are natural and highly active biological molecules that increase the speed of catalytic reactions. They are used in various biotechnological and industrial areas due to their characteristics such as activity at diverse pHs and temperatures, easy production, high substrate specificity and selectivity, green chemistry, reusability, biodegradability, biocompatibility, etc. But the use of free enzymes can cause the activity to be lost during the industrial processes and decrease the product efficiency. The enzyme immobilization methods (conventional or new generation techniques) can prevent the loss of catalytic activity and product. Enzyme immobilization is a significant way for the entrapment of free or soluble enzymes to a solid insoluble matrix other than a substrate or product to create insoluble, reusable enzymes with high activity and stability. In this chapter, general information about enzymes, industrial application fields, enzyme demand in industrial sectors, the importance of enzyme immobilization, different immobilization methods, and the new generation hybrid nanoflowers (HNFs) are explained.</description><identifier>ISBN: 1119576814</identifier><identifier>ISBN: 9781119576815</identifier><identifier>EISBN: 1119576792</identifier><identifier>EISBN: 9781119576792</identifier><identifier>EISBN: 1119576784</identifier><identifier>EISBN: 9781119576785</identifier><identifier>DOI: 10.1002/9781119576785.ch7</identifier><identifier>OCLC: 1193126837</identifier><identifier>LCCallNum: TP339 .G744 2021</identifier><language>eng</language><publisher>United Kingdom: John Wiley &amp; Sons, Incorporated</publisher><subject>enzyme ; immobilization ; nanoflower ; nanomaterial ; nanoparticle</subject><ispartof>Green Synthesis of Nanomaterials for Bioenergy Applications, 2020, p.165-190</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243f-6c8182fb019b4954b00a9ff96867bdc316e492002b1834cc2439b2be91ac07253</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6321337-l.jpg</thumbnail><link.rule.ids>777,778,782,791,27912</link.rule.ids></links><search><contributor>Gupta, Vijai Kumar</contributor><contributor>Mishra, P. K</contributor><contributor>Srivastava, Manish</contributor><contributor>Srivastava, Neha</contributor><contributor>Mishra, P. K</contributor><contributor>Srivastava, Neha</contributor><contributor>Srivastava, Manish</contributor><contributor>Gupta, Vijai Kumar</contributor><creatorcontrib>Arabacı, Nihan</creatorcontrib><creatorcontrib>Karaytuğ, Tuna</creatorcontrib><creatorcontrib>Demirbas, Ayse</creatorcontrib><creatorcontrib>Ocsoy, Ismail</creatorcontrib><creatorcontrib>Katı, Ahmet</creatorcontrib><title>Nanomaterials for Enzyme Immobilization</title><title>Green Synthesis of Nanomaterials for Bioenergy Applications</title><description>Enzymes are natural and highly active biological molecules that increase the speed of catalytic reactions. They are used in various biotechnological and industrial areas due to their characteristics such as activity at diverse pHs and temperatures, easy production, high substrate specificity and selectivity, green chemistry, reusability, biodegradability, biocompatibility, etc. But the use of free enzymes can cause the activity to be lost during the industrial processes and decrease the product efficiency. The enzyme immobilization methods (conventional or new generation techniques) can prevent the loss of catalytic activity and product. Enzyme immobilization is a significant way for the entrapment of free or soluble enzymes to a solid insoluble matrix other than a substrate or product to create insoluble, reusable enzymes with high activity and stability. In this chapter, general information about enzymes, industrial application fields, enzyme demand in industrial sectors, the importance of enzyme immobilization, different immobilization methods, and the new generation hybrid nanoflowers (HNFs) are explained.</description><subject>enzyme</subject><subject>immobilization</subject><subject>nanoflower</subject><subject>nanomaterial</subject><subject>nanoparticle</subject><isbn>1119576814</isbn><isbn>9781119576815</isbn><isbn>1119576792</isbn><isbn>9781119576792</isbn><isbn>1119576784</isbn><isbn>9781119576785</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2020</creationdate><recordtype>book_chapter</recordtype><recordid>eNptkE9LAzEQxSOiqLUfwFtvnrZmkmz-HKXUWih60XNI0oSu7m7W3RXpfnqzVAXFw2OY4f3eMIPQFeA5YExulJAAoHLBhcznbieO0MX3QJHjn0YCOx0bRYFwScUZmnbdC04RDEsp6Tm6fjB1rEzv28KU3SzEdrash33lZ-uqirYoi8H0Rawv0UlIBj_9qhP0fLd8Wtxnm8fVenG7yRxhNGTcSZAkWAzKMpUzi7FRISguubBbR4F7pkjab0FS5kZIWWK9AuOwIDmdoOyQ-1GUfq-9jfG107_u1UPR6HSzbrYh-eEfP2A9_ukPNzJJiWEHpmnj27vv-gPmfN23pnQ706R3dJpTApQKDZAkc_oJGu9pDg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Arabacı, Nihan</creator><creator>Karaytuğ, Tuna</creator><creator>Demirbas, Ayse</creator><creator>Ocsoy, Ismail</creator><creator>Katı, Ahmet</creator><general>John Wiley &amp; Sons, Incorporated</general><general>John Wiley &amp; Sons, Ltd</general><scope>FFUUA</scope></search><sort><creationdate>2020</creationdate><title>Nanomaterials for Enzyme Immobilization</title><author>Arabacı, Nihan ; Karaytuğ, Tuna ; Demirbas, Ayse ; Ocsoy, Ismail ; Katı, Ahmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243f-6c8182fb019b4954b00a9ff96867bdc316e492002b1834cc2439b2be91ac07253</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2020</creationdate><topic>enzyme</topic><topic>immobilization</topic><topic>nanoflower</topic><topic>nanomaterial</topic><topic>nanoparticle</topic><toplevel>online_resources</toplevel><creatorcontrib>Arabacı, Nihan</creatorcontrib><creatorcontrib>Karaytuğ, Tuna</creatorcontrib><creatorcontrib>Demirbas, Ayse</creatorcontrib><creatorcontrib>Ocsoy, Ismail</creatorcontrib><creatorcontrib>Katı, Ahmet</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arabacı, Nihan</au><au>Karaytuğ, Tuna</au><au>Demirbas, Ayse</au><au>Ocsoy, Ismail</au><au>Katı, Ahmet</au><au>Gupta, Vijai Kumar</au><au>Mishra, P. K</au><au>Srivastava, Manish</au><au>Srivastava, Neha</au><au>Mishra, P. K</au><au>Srivastava, Neha</au><au>Srivastava, Manish</au><au>Gupta, Vijai Kumar</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Nanomaterials for Enzyme Immobilization</atitle><btitle>Green Synthesis of Nanomaterials for Bioenergy Applications</btitle><date>2020</date><risdate>2020</risdate><spage>165</spage><epage>190</epage><pages>165-190</pages><isbn>1119576814</isbn><isbn>9781119576815</isbn><eisbn>1119576792</eisbn><eisbn>9781119576792</eisbn><eisbn>1119576784</eisbn><eisbn>9781119576785</eisbn><abstract>Enzymes are natural and highly active biological molecules that increase the speed of catalytic reactions. They are used in various biotechnological and industrial areas due to their characteristics such as activity at diverse pHs and temperatures, easy production, high substrate specificity and selectivity, green chemistry, reusability, biodegradability, biocompatibility, etc. But the use of free enzymes can cause the activity to be lost during the industrial processes and decrease the product efficiency. The enzyme immobilization methods (conventional or new generation techniques) can prevent the loss of catalytic activity and product. Enzyme immobilization is a significant way for the entrapment of free or soluble enzymes to a solid insoluble matrix other than a substrate or product to create insoluble, reusable enzymes with high activity and stability. In this chapter, general information about enzymes, industrial application fields, enzyme demand in industrial sectors, the importance of enzyme immobilization, different immobilization methods, and the new generation hybrid nanoflowers (HNFs) are explained.</abstract><cop>United Kingdom</cop><pub>John Wiley &amp; Sons, Incorporated</pub><doi>10.1002/9781119576785.ch7</doi><oclcid>1193126837</oclcid><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISBN: 1119576814
ispartof Green Synthesis of Nanomaterials for Bioenergy Applications, 2020, p.165-190
issn
language eng
recordid cdi_proquest_ebookcentralchapters_6321337_117_185
source Ebook Central Perpetual and DDA
subjects enzyme
immobilization
nanoflower
nanomaterial
nanoparticle
title Nanomaterials for Enzyme Immobilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Nanomaterials%20for%20Enzyme%20Immobilization&rft.btitle=Green%20Synthesis%20of%20Nanomaterials%20for%20Bioenergy%20Applications&rft.au=Arabac%C4%B1,%20Nihan&rft.date=2020&rft.spage=165&rft.epage=190&rft.pages=165-190&rft.isbn=1119576814&rft.isbn_list=9781119576815&rft_id=info:doi/10.1002/9781119576785.ch7&rft_dat=%3Cproquest_wiley%3EEBC6321337_117_185%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=1119576792&rft.eisbn_list=9781119576792&rft.eisbn_list=1119576784&rft.eisbn_list=9781119576785&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6321337_117_185&rft_id=info:pmid/&rfr_iscdi=true