Nanomaterials for Enzyme Immobilization
Enzymes are natural and highly active biological molecules that increase the speed of catalytic reactions. They are used in various biotechnological and industrial areas due to their characteristics such as activity at diverse pHs and temperatures, easy production, high substrate specificity and sel...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 190 |
---|---|
container_issue | |
container_start_page | 165 |
container_title | |
container_volume | |
creator | Arabacı, Nihan Karaytuğ, Tuna Demirbas, Ayse Ocsoy, Ismail Katı, Ahmet |
description | Enzymes are natural and highly active biological molecules that increase the speed of catalytic reactions. They are used in various biotechnological and industrial areas due to their characteristics such as activity at diverse pHs and temperatures, easy production, high substrate specificity and selectivity, green chemistry, reusability, biodegradability, biocompatibility, etc.
But the use of free enzymes can cause the activity to be lost during the industrial processes and decrease the product efficiency. The enzyme immobilization methods (conventional or new generation techniques) can prevent the loss of catalytic activity and product. Enzyme immobilization is a significant way for the entrapment of free or soluble enzymes to a solid insoluble matrix other than a substrate or product to create insoluble, reusable enzymes with high activity and stability.
In this chapter, general information about enzymes, industrial application fields, enzyme demand in industrial sectors, the importance of enzyme immobilization, different immobilization methods, and the new generation hybrid nanoflowers (HNFs) are explained. |
doi_str_mv | 10.1002/9781119576785.ch7 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_6321337_117_185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6321337_117_185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243f-6c8182fb019b4954b00a9ff96867bdc316e492002b1834cc2439b2be91ac07253</originalsourceid><addsrcrecordid>eNptkE9LAzEQxSOiqLUfwFtvnrZmkmz-HKXUWih60XNI0oSu7m7W3RXpfnqzVAXFw2OY4f3eMIPQFeA5YExulJAAoHLBhcznbieO0MX3QJHjn0YCOx0bRYFwScUZmnbdC04RDEsp6Tm6fjB1rEzv28KU3SzEdrash33lZ-uqirYoi8H0Rawv0UlIBj_9qhP0fLd8Wtxnm8fVenG7yRxhNGTcSZAkWAzKMpUzi7FRISguubBbR4F7pkjab0FS5kZIWWK9AuOwIDmdoOyQ-1GUfq-9jfG107_u1UPR6HSzbrYh-eEfP2A9_ukPNzJJiWEHpmnj27vv-gPmfN23pnQ706R3dJpTApQKDZAkc_oJGu9pDg</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6321337_117_185</pqid></control><display><type>book_chapter</type><title>Nanomaterials for Enzyme Immobilization</title><source>Ebook Central Perpetual and DDA</source><creator>Arabacı, Nihan ; Karaytuğ, Tuna ; Demirbas, Ayse ; Ocsoy, Ismail ; Katı, Ahmet</creator><contributor>Gupta, Vijai Kumar ; Mishra, P. K ; Srivastava, Manish ; Srivastava, Neha ; Mishra, P. K ; Srivastava, Neha ; Srivastava, Manish ; Gupta, Vijai Kumar</contributor><creatorcontrib>Arabacı, Nihan ; Karaytuğ, Tuna ; Demirbas, Ayse ; Ocsoy, Ismail ; Katı, Ahmet ; Gupta, Vijai Kumar ; Mishra, P. K ; Srivastava, Manish ; Srivastava, Neha ; Mishra, P. K ; Srivastava, Neha ; Srivastava, Manish ; Gupta, Vijai Kumar</creatorcontrib><description>Enzymes are natural and highly active biological molecules that increase the speed of catalytic reactions. They are used in various biotechnological and industrial areas due to their characteristics such as activity at diverse pHs and temperatures, easy production, high substrate specificity and selectivity, green chemistry, reusability, biodegradability, biocompatibility, etc.
But the use of free enzymes can cause the activity to be lost during the industrial processes and decrease the product efficiency. The enzyme immobilization methods (conventional or new generation techniques) can prevent the loss of catalytic activity and product. Enzyme immobilization is a significant way for the entrapment of free or soluble enzymes to a solid insoluble matrix other than a substrate or product to create insoluble, reusable enzymes with high activity and stability.
In this chapter, general information about enzymes, industrial application fields, enzyme demand in industrial sectors, the importance of enzyme immobilization, different immobilization methods, and the new generation hybrid nanoflowers (HNFs) are explained.</description><identifier>ISBN: 1119576814</identifier><identifier>ISBN: 9781119576815</identifier><identifier>EISBN: 1119576792</identifier><identifier>EISBN: 9781119576792</identifier><identifier>EISBN: 1119576784</identifier><identifier>EISBN: 9781119576785</identifier><identifier>DOI: 10.1002/9781119576785.ch7</identifier><identifier>OCLC: 1193126837</identifier><identifier>LCCallNum: TP339 .G744 2021</identifier><language>eng</language><publisher>United Kingdom: John Wiley & Sons, Incorporated</publisher><subject>enzyme ; immobilization ; nanoflower ; nanomaterial ; nanoparticle</subject><ispartof>Green Synthesis of Nanomaterials for Bioenergy Applications, 2020, p.165-190</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243f-6c8182fb019b4954b00a9ff96867bdc316e492002b1834cc2439b2be91ac07253</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6321337-l.jpg</thumbnail><link.rule.ids>777,778,782,791,27912</link.rule.ids></links><search><contributor>Gupta, Vijai Kumar</contributor><contributor>Mishra, P. K</contributor><contributor>Srivastava, Manish</contributor><contributor>Srivastava, Neha</contributor><contributor>Mishra, P. K</contributor><contributor>Srivastava, Neha</contributor><contributor>Srivastava, Manish</contributor><contributor>Gupta, Vijai Kumar</contributor><creatorcontrib>Arabacı, Nihan</creatorcontrib><creatorcontrib>Karaytuğ, Tuna</creatorcontrib><creatorcontrib>Demirbas, Ayse</creatorcontrib><creatorcontrib>Ocsoy, Ismail</creatorcontrib><creatorcontrib>Katı, Ahmet</creatorcontrib><title>Nanomaterials for Enzyme Immobilization</title><title>Green Synthesis of Nanomaterials for Bioenergy Applications</title><description>Enzymes are natural and highly active biological molecules that increase the speed of catalytic reactions. They are used in various biotechnological and industrial areas due to their characteristics such as activity at diverse pHs and temperatures, easy production, high substrate specificity and selectivity, green chemistry, reusability, biodegradability, biocompatibility, etc.
But the use of free enzymes can cause the activity to be lost during the industrial processes and decrease the product efficiency. The enzyme immobilization methods (conventional or new generation techniques) can prevent the loss of catalytic activity and product. Enzyme immobilization is a significant way for the entrapment of free or soluble enzymes to a solid insoluble matrix other than a substrate or product to create insoluble, reusable enzymes with high activity and stability.
In this chapter, general information about enzymes, industrial application fields, enzyme demand in industrial sectors, the importance of enzyme immobilization, different immobilization methods, and the new generation hybrid nanoflowers (HNFs) are explained.</description><subject>enzyme</subject><subject>immobilization</subject><subject>nanoflower</subject><subject>nanomaterial</subject><subject>nanoparticle</subject><isbn>1119576814</isbn><isbn>9781119576815</isbn><isbn>1119576792</isbn><isbn>9781119576792</isbn><isbn>1119576784</isbn><isbn>9781119576785</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2020</creationdate><recordtype>book_chapter</recordtype><recordid>eNptkE9LAzEQxSOiqLUfwFtvnrZmkmz-HKXUWih60XNI0oSu7m7W3RXpfnqzVAXFw2OY4f3eMIPQFeA5YExulJAAoHLBhcznbieO0MX3QJHjn0YCOx0bRYFwScUZmnbdC04RDEsp6Tm6fjB1rEzv28KU3SzEdrash33lZ-uqirYoi8H0Rawv0UlIBj_9qhP0fLd8Wtxnm8fVenG7yRxhNGTcSZAkWAzKMpUzi7FRISguubBbR4F7pkjab0FS5kZIWWK9AuOwIDmdoOyQ-1GUfq-9jfG107_u1UPR6HSzbrYh-eEfP2A9_ukPNzJJiWEHpmnj27vv-gPmfN23pnQ706R3dJpTApQKDZAkc_oJGu9pDg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Arabacı, Nihan</creator><creator>Karaytuğ, Tuna</creator><creator>Demirbas, Ayse</creator><creator>Ocsoy, Ismail</creator><creator>Katı, Ahmet</creator><general>John Wiley & Sons, Incorporated</general><general>John Wiley & Sons, Ltd</general><scope>FFUUA</scope></search><sort><creationdate>2020</creationdate><title>Nanomaterials for Enzyme Immobilization</title><author>Arabacı, Nihan ; Karaytuğ, Tuna ; Demirbas, Ayse ; Ocsoy, Ismail ; Katı, Ahmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243f-6c8182fb019b4954b00a9ff96867bdc316e492002b1834cc2439b2be91ac07253</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2020</creationdate><topic>enzyme</topic><topic>immobilization</topic><topic>nanoflower</topic><topic>nanomaterial</topic><topic>nanoparticle</topic><toplevel>online_resources</toplevel><creatorcontrib>Arabacı, Nihan</creatorcontrib><creatorcontrib>Karaytuğ, Tuna</creatorcontrib><creatorcontrib>Demirbas, Ayse</creatorcontrib><creatorcontrib>Ocsoy, Ismail</creatorcontrib><creatorcontrib>Katı, Ahmet</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arabacı, Nihan</au><au>Karaytuğ, Tuna</au><au>Demirbas, Ayse</au><au>Ocsoy, Ismail</au><au>Katı, Ahmet</au><au>Gupta, Vijai Kumar</au><au>Mishra, P. K</au><au>Srivastava, Manish</au><au>Srivastava, Neha</au><au>Mishra, P. K</au><au>Srivastava, Neha</au><au>Srivastava, Manish</au><au>Gupta, Vijai Kumar</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Nanomaterials for Enzyme Immobilization</atitle><btitle>Green Synthesis of Nanomaterials for Bioenergy Applications</btitle><date>2020</date><risdate>2020</risdate><spage>165</spage><epage>190</epage><pages>165-190</pages><isbn>1119576814</isbn><isbn>9781119576815</isbn><eisbn>1119576792</eisbn><eisbn>9781119576792</eisbn><eisbn>1119576784</eisbn><eisbn>9781119576785</eisbn><abstract>Enzymes are natural and highly active biological molecules that increase the speed of catalytic reactions. They are used in various biotechnological and industrial areas due to their characteristics such as activity at diverse pHs and temperatures, easy production, high substrate specificity and selectivity, green chemistry, reusability, biodegradability, biocompatibility, etc.
But the use of free enzymes can cause the activity to be lost during the industrial processes and decrease the product efficiency. The enzyme immobilization methods (conventional or new generation techniques) can prevent the loss of catalytic activity and product. Enzyme immobilization is a significant way for the entrapment of free or soluble enzymes to a solid insoluble matrix other than a substrate or product to create insoluble, reusable enzymes with high activity and stability.
In this chapter, general information about enzymes, industrial application fields, enzyme demand in industrial sectors, the importance of enzyme immobilization, different immobilization methods, and the new generation hybrid nanoflowers (HNFs) are explained.</abstract><cop>United Kingdom</cop><pub>John Wiley & Sons, Incorporated</pub><doi>10.1002/9781119576785.ch7</doi><oclcid>1193126837</oclcid><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 1119576814 |
ispartof | Green Synthesis of Nanomaterials for Bioenergy Applications, 2020, p.165-190 |
issn | |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_6321337_117_185 |
source | Ebook Central Perpetual and DDA |
subjects | enzyme immobilization nanoflower nanomaterial nanoparticle |
title | Nanomaterials for Enzyme Immobilization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Nanomaterials%20for%20Enzyme%20Immobilization&rft.btitle=Green%20Synthesis%20of%20Nanomaterials%20for%20Bioenergy%20Applications&rft.au=Arabac%C4%B1,%20Nihan&rft.date=2020&rft.spage=165&rft.epage=190&rft.pages=165-190&rft.isbn=1119576814&rft.isbn_list=9781119576815&rft_id=info:doi/10.1002/9781119576785.ch7&rft_dat=%3Cproquest_wiley%3EEBC6321337_117_185%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=1119576792&rft.eisbn_list=9781119576792&rft.eisbn_list=1119576784&rft.eisbn_list=9781119576785&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6321337_117_185&rft_id=info:pmid/&rfr_iscdi=true |