Patient Stratification and Treatment Response Prediction

The transition from a normal cell to a cancer cell is driven by genetic alterations, such as mutations, that induce uncontrolled cell proliferation. This chapter describes NetNorM, a method proposed by Le Morvan et al., that transforms mutation data using gene networks so as to make mutation profile...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kuperstein, Inna, Barillot, Emmanuel
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue
container_start_page 117
container_title
container_volume
creator Kuperstein, Inna
Barillot, Emmanuel
description The transition from a normal cell to a cancer cell is driven by genetic alterations, such as mutations, that induce uncontrolled cell proliferation. This chapter describes NetNorM, a method proposed by Le Morvan et al., that transforms mutation data using gene networks so as to make mutation profiles more amenable to statistical learning. NetNorM was shown to significantly improve the prognostic power of somatic mutation data, and to allow defining meaningful groups of patients based on their mutation profiles. The chapter shows that NetNorM normalization improves survival prediction and patient stratification in some cases, and proposes the interested reader to the original publication for more details. Exploiting the wealth of cancer genomic data collected by large-scale sequencing efforts is a pressing need for clinical applications. Systematically assessing and monitoring somatic mutations in cancer therefore offers the opportunity to help rationalize patient treatment in a clinical setting.
doi_str_mv 10.1201/9780429330179-7
format Book Chapter
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_5893765_129_136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5893765_129_136</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1096-e1f3d1ebba64403cca7a50f0aaa570e7641448cd8c4bf93713075302e30979003</originalsourceid><addsrcrecordid>eNpVkE1PwzAMhoMQCDZ25to_ULCTtGmOaOJLmsQE4xy5aSoKXTOSAOLf02pcdrEt2-8j-2XsEuEKOeC1VhVIroUAVDpXR2xx0DlmMxClElJyxFM2Q0Rdco4AZ2wR4zsAcM4rVOqcVWtKnRtS9pLCWLWdHaMfMhqabBMcpe00fHZx54fosnVwTWenjQt20lIf3eI_z9nr3e1m-ZCvnu4flzervEPQZe6wFQ26uqZSShDWkqICWiCiQoFTpUQpK9tUVtatFgoFqEIAdwK00gBizuSeuwv-88vFZFzt_YcdzwrU2zfaJReiKapRXBYGuTYoylF2v5d1Q-vDln586BuT6Lf3oQ002C5OmGgQzOSpOXDQKPM9Usc3ufgDpfNp7A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC5893765_129_136</pqid></control><display><type>book_chapter</type><title>Patient Stratification and Treatment Response Prediction</title><source>eBooks on EBSCOhost</source><creator>Kuperstein, Inna ; Barillot, Emmanuel</creator><contributor>Kuperstein, Inna ; Barillot, Emmanuel</contributor><creatorcontrib>Kuperstein, Inna ; Barillot, Emmanuel ; Kuperstein, Inna ; Barillot, Emmanuel</creatorcontrib><description>The transition from a normal cell to a cancer cell is driven by genetic alterations, such as mutations, that induce uncontrolled cell proliferation. This chapter describes NetNorM, a method proposed by Le Morvan et al., that transforms mutation data using gene networks so as to make mutation profiles more amenable to statistical learning. NetNorM was shown to significantly improve the prognostic power of somatic mutation data, and to allow defining meaningful groups of patients based on their mutation profiles. The chapter shows that NetNorM normalization improves survival prediction and patient stratification in some cases, and proposes the interested reader to the original publication for more details. Exploiting the wealth of cancer genomic data collected by large-scale sequencing efforts is a pressing need for clinical applications. Systematically assessing and monitoring somatic mutations in cancer therefore offers the opportunity to help rationalize patient treatment in a clinical setting.</description><edition>1</edition><identifier>ISBN: 0367344211</identifier><identifier>ISBN: 9780367344214</identifier><identifier>EISBN: 9780429330179</identifier><identifier>EISBN: 0429330170</identifier><identifier>EISBN: 1000682560</identifier><identifier>EISBN: 9781000682564</identifier><identifier>DOI: 10.1201/9780429330179-7</identifier><identifier>OCLC: 1119622100</identifier><identifier>LCCallNum: RC267 .C594 2020</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><ispartof>Computational Systems Biology Approaches in Cancer Research, 2020, p.117-150</ispartof><rights>2020 by Taylor &amp; Francis Group, LLC</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/5893765-l.jpg</thumbnail><link.rule.ids>775,776,780,789,27902</link.rule.ids></links><search><contributor>Kuperstein, Inna</contributor><contributor>Barillot, Emmanuel</contributor><creatorcontrib>Kuperstein, Inna</creatorcontrib><creatorcontrib>Barillot, Emmanuel</creatorcontrib><title>Patient Stratification and Treatment Response Prediction</title><title>Computational Systems Biology Approaches in Cancer Research</title><description>The transition from a normal cell to a cancer cell is driven by genetic alterations, such as mutations, that induce uncontrolled cell proliferation. This chapter describes NetNorM, a method proposed by Le Morvan et al., that transforms mutation data using gene networks so as to make mutation profiles more amenable to statistical learning. NetNorM was shown to significantly improve the prognostic power of somatic mutation data, and to allow defining meaningful groups of patients based on their mutation profiles. The chapter shows that NetNorM normalization improves survival prediction and patient stratification in some cases, and proposes the interested reader to the original publication for more details. Exploiting the wealth of cancer genomic data collected by large-scale sequencing efforts is a pressing need for clinical applications. Systematically assessing and monitoring somatic mutations in cancer therefore offers the opportunity to help rationalize patient treatment in a clinical setting.</description><isbn>0367344211</isbn><isbn>9780367344214</isbn><isbn>9780429330179</isbn><isbn>0429330170</isbn><isbn>1000682560</isbn><isbn>9781000682564</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2020</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkE1PwzAMhoMQCDZ25to_ULCTtGmOaOJLmsQE4xy5aSoKXTOSAOLf02pcdrEt2-8j-2XsEuEKOeC1VhVIroUAVDpXR2xx0DlmMxClElJyxFM2Q0Rdco4AZ2wR4zsAcM4rVOqcVWtKnRtS9pLCWLWdHaMfMhqabBMcpe00fHZx54fosnVwTWenjQt20lIf3eI_z9nr3e1m-ZCvnu4flzervEPQZe6wFQ26uqZSShDWkqICWiCiQoFTpUQpK9tUVtatFgoFqEIAdwK00gBizuSeuwv-88vFZFzt_YcdzwrU2zfaJReiKapRXBYGuTYoylF2v5d1Q-vDln586BuT6Lf3oQ002C5OmGgQzOSpOXDQKPM9Usc3ufgDpfNp7A</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kuperstein, Inna</creator><creator>Barillot, Emmanuel</creator><general>CRC Press</general><general>CRC Press LLC</general><scope>FFUUA</scope></search><sort><creationdate>2020</creationdate><title>Patient Stratification and Treatment Response Prediction</title><author>Kuperstein, Inna ; Barillot, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1096-e1f3d1ebba64403cca7a50f0aaa570e7641448cd8c4bf93713075302e30979003</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kuperstein, Inna</creatorcontrib><creatorcontrib>Barillot, Emmanuel</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuperstein, Inna</au><au>Barillot, Emmanuel</au><au>Kuperstein, Inna</au><au>Barillot, Emmanuel</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Patient Stratification and Treatment Response Prediction</atitle><btitle>Computational Systems Biology Approaches in Cancer Research</btitle><date>2020</date><risdate>2020</risdate><spage>117</spage><epage>150</epage><pages>117-150</pages><isbn>0367344211</isbn><isbn>9780367344214</isbn><eisbn>9780429330179</eisbn><eisbn>0429330170</eisbn><eisbn>1000682560</eisbn><eisbn>9781000682564</eisbn><abstract>The transition from a normal cell to a cancer cell is driven by genetic alterations, such as mutations, that induce uncontrolled cell proliferation. This chapter describes NetNorM, a method proposed by Le Morvan et al., that transforms mutation data using gene networks so as to make mutation profiles more amenable to statistical learning. NetNorM was shown to significantly improve the prognostic power of somatic mutation data, and to allow defining meaningful groups of patients based on their mutation profiles. The chapter shows that NetNorM normalization improves survival prediction and patient stratification in some cases, and proposes the interested reader to the original publication for more details. Exploiting the wealth of cancer genomic data collected by large-scale sequencing efforts is a pressing need for clinical applications. Systematically assessing and monitoring somatic mutations in cancer therefore offers the opportunity to help rationalize patient treatment in a clinical setting.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/9780429330179-7</doi><oclcid>1119622100</oclcid><tpages>34</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISBN: 0367344211
ispartof Computational Systems Biology Approaches in Cancer Research, 2020, p.117-150
issn
language eng
recordid cdi_proquest_ebookcentralchapters_5893765_129_136
source eBooks on EBSCOhost
title Patient Stratification and Treatment Response Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Patient%20Stratification%20and%20Treatment%20Response%20Prediction&rft.btitle=Computational%20Systems%20Biology%20Approaches%20in%20Cancer%20Research&rft.au=Kuperstein,%20Inna&rft.date=2020&rft.spage=117&rft.epage=150&rft.pages=117-150&rft.isbn=0367344211&rft.isbn_list=9780367344214&rft_id=info:doi/10.1201/9780429330179-7&rft_dat=%3Cproquest_infor%3EEBC5893765_129_136%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780429330179&rft.eisbn_list=0429330170&rft.eisbn_list=1000682560&rft.eisbn_list=9781000682564&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5893765_129_136&rft_id=info:pmid/&rfr_iscdi=true