Single-Cell Analysis in Cancer
Cancer is a severe disease caused by mutations in the genome accumulated in individual cells. Single-cell analysis techniques offer the opportunity to gain unprecedented insights into cellular organs and tissues. Multicellular organisms consist of different cell types that give rise to a multitude o...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116 |
---|---|
container_issue | |
container_start_page | 103 |
container_title | |
container_volume | |
creator | Kuperstein, Inna Barillot, Emmanuel |
description | Cancer is a severe disease caused by mutations in the genome accumulated in individual cells. Single-cell analysis techniques offer the opportunity to gain unprecedented insights into cellular organs and tissues. Multicellular organisms consist of different cell types that give rise to a multitude of organs and tissues with distinct functions. Lineage inference can be a challenging task, especially when multiple differentiation trajectories from a common progenitor pool towards several different mature cell types exist. The rapid progress of single-cell sequencing techniques has led to continuously growing interest in investigating biological systems on a single-cell basis and has given rise to international efforts to map all human cell types to create a human cell atlas. The development of single-cell sequencing technologies offers unprecedented resolution in tumour phylogeny reconstruction. Single-cell sequencing offers unprecedented resolution for assessing tumour heterogeneity and evolution. However, single-cell sequencing data have elevated noise levels, such that tailored analysis tools are required. |
doi_str_mv | 10.1201/9780429330179-6 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_5893765_114_122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5893765_114_122</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1092-35871178b761e8070f2288dad3865e9de1857ddc4f5595de398cba2fd40ec37e3</originalsourceid><addsrcrecordid>eNpVkE1LAzEURSOiaGvX7qR_YPS9fGdZBq1CwYW6Dukko9E4U5NR6b93St10deHCPXAPIZcI10gBb4zSwKlhDFCZSh6R2UFzTCbApGKcU8RTMkFEIylFgDMyK-UdACilGpU6J1dPsXtNoapDSvNF59K2xDKP3bx2XRPyBTlpXSph9p9T8nJ3-1zfV6vH5UO9WFURwdCKCa0QlV4riUGDgnbka-8801IE4wNqobxveCuEET4wo5u1o63nEBqmApsSvuducv_1Hcpgw7rvP5rQDdml5s1thpCLFdowJYVF5BYpHWfL_Sx2bZ8_3W-fk7eD26Y-t3l8EMsOUyyC3ZmzB56stD8jNfYdZX-PTF-J</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC5893765_114_122</pqid></control><display><type>book_chapter</type><title>Single-Cell Analysis in Cancer</title><source>eBooks on EBSCOhost</source><creator>Kuperstein, Inna ; Barillot, Emmanuel</creator><contributor>Kuperstein, Inna ; Barillot, Emmanuel</contributor><creatorcontrib>Kuperstein, Inna ; Barillot, Emmanuel ; Kuperstein, Inna ; Barillot, Emmanuel</creatorcontrib><description>Cancer is a severe disease caused by mutations in the genome accumulated in individual cells. Single-cell analysis techniques offer the opportunity to gain unprecedented insights into cellular organs and tissues. Multicellular organisms consist of different cell types that give rise to a multitude of organs and tissues with distinct functions. Lineage inference can be a challenging task, especially when multiple differentiation trajectories from a common progenitor pool towards several different mature cell types exist. The rapid progress of single-cell sequencing techniques has led to continuously growing interest in investigating biological systems on a single-cell basis and has given rise to international efforts to map all human cell types to create a human cell atlas. The development of single-cell sequencing technologies offers unprecedented resolution in tumour phylogeny reconstruction. Single-cell sequencing offers unprecedented resolution for assessing tumour heterogeneity and evolution. However, single-cell sequencing data have elevated noise levels, such that tailored analysis tools are required.</description><edition>1</edition><identifier>ISBN: 0367344211</identifier><identifier>ISBN: 9780367344214</identifier><identifier>EISBN: 9780429330179</identifier><identifier>EISBN: 0429330170</identifier><identifier>EISBN: 1000682560</identifier><identifier>EISBN: 9781000682564</identifier><identifier>DOI: 10.1201/9780429330179-6</identifier><identifier>OCLC: 1119622100</identifier><identifier>LCCallNum: RC267 .C594 2020</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><ispartof>Computational Systems Biology Approaches in Cancer Research, 2020, p.103-116</ispartof><rights>2020 by Taylor & Francis Group, LLC</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/5893765-l.jpg</thumbnail><link.rule.ids>775,776,780,789,27902</link.rule.ids></links><search><contributor>Kuperstein, Inna</contributor><contributor>Barillot, Emmanuel</contributor><creatorcontrib>Kuperstein, Inna</creatorcontrib><creatorcontrib>Barillot, Emmanuel</creatorcontrib><title>Single-Cell Analysis in Cancer</title><title>Computational Systems Biology Approaches in Cancer Research</title><description>Cancer is a severe disease caused by mutations in the genome accumulated in individual cells. Single-cell analysis techniques offer the opportunity to gain unprecedented insights into cellular organs and tissues. Multicellular organisms consist of different cell types that give rise to a multitude of organs and tissues with distinct functions. Lineage inference can be a challenging task, especially when multiple differentiation trajectories from a common progenitor pool towards several different mature cell types exist. The rapid progress of single-cell sequencing techniques has led to continuously growing interest in investigating biological systems on a single-cell basis and has given rise to international efforts to map all human cell types to create a human cell atlas. The development of single-cell sequencing technologies offers unprecedented resolution in tumour phylogeny reconstruction. Single-cell sequencing offers unprecedented resolution for assessing tumour heterogeneity and evolution. However, single-cell sequencing data have elevated noise levels, such that tailored analysis tools are required.</description><isbn>0367344211</isbn><isbn>9780367344214</isbn><isbn>9780429330179</isbn><isbn>0429330170</isbn><isbn>1000682560</isbn><isbn>9781000682564</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2020</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkE1LAzEURSOiaGvX7qR_YPS9fGdZBq1CwYW6Dukko9E4U5NR6b93St10deHCPXAPIZcI10gBb4zSwKlhDFCZSh6R2UFzTCbApGKcU8RTMkFEIylFgDMyK-UdACilGpU6J1dPsXtNoapDSvNF59K2xDKP3bx2XRPyBTlpXSph9p9T8nJ3-1zfV6vH5UO9WFURwdCKCa0QlV4riUGDgnbka-8801IE4wNqobxveCuEET4wo5u1o63nEBqmApsSvuducv_1Hcpgw7rvP5rQDdml5s1thpCLFdowJYVF5BYpHWfL_Sx2bZ8_3W-fk7eD26Y-t3l8EMsOUyyC3ZmzB56stD8jNfYdZX-PTF-J</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kuperstein, Inna</creator><creator>Barillot, Emmanuel</creator><general>CRC Press</general><general>CRC Press LLC</general><scope>FFUUA</scope></search><sort><creationdate>2020</creationdate><title>Single-Cell Analysis in Cancer</title><author>Kuperstein, Inna ; Barillot, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1092-35871178b761e8070f2288dad3865e9de1857ddc4f5595de398cba2fd40ec37e3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kuperstein, Inna</creatorcontrib><creatorcontrib>Barillot, Emmanuel</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuperstein, Inna</au><au>Barillot, Emmanuel</au><au>Kuperstein, Inna</au><au>Barillot, Emmanuel</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Single-Cell Analysis in Cancer</atitle><btitle>Computational Systems Biology Approaches in Cancer Research</btitle><date>2020</date><risdate>2020</risdate><spage>103</spage><epage>116</epage><pages>103-116</pages><isbn>0367344211</isbn><isbn>9780367344214</isbn><eisbn>9780429330179</eisbn><eisbn>0429330170</eisbn><eisbn>1000682560</eisbn><eisbn>9781000682564</eisbn><abstract>Cancer is a severe disease caused by mutations in the genome accumulated in individual cells. Single-cell analysis techniques offer the opportunity to gain unprecedented insights into cellular organs and tissues. Multicellular organisms consist of different cell types that give rise to a multitude of organs and tissues with distinct functions. Lineage inference can be a challenging task, especially when multiple differentiation trajectories from a common progenitor pool towards several different mature cell types exist. The rapid progress of single-cell sequencing techniques has led to continuously growing interest in investigating biological systems on a single-cell basis and has given rise to international efforts to map all human cell types to create a human cell atlas. The development of single-cell sequencing technologies offers unprecedented resolution in tumour phylogeny reconstruction. Single-cell sequencing offers unprecedented resolution for assessing tumour heterogeneity and evolution. However, single-cell sequencing data have elevated noise levels, such that tailored analysis tools are required.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/9780429330179-6</doi><oclcid>1119622100</oclcid><tpages>14</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISBN: 0367344211 |
ispartof | Computational Systems Biology Approaches in Cancer Research, 2020, p.103-116 |
issn | |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_5893765_114_122 |
source | eBooks on EBSCOhost |
title | Single-Cell Analysis in Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Single-Cell%20Analysis%20in%20Cancer&rft.btitle=Computational%20Systems%20Biology%20Approaches%20in%20Cancer%20Research&rft.au=Kuperstein,%20Inna&rft.date=2020&rft.spage=103&rft.epage=116&rft.pages=103-116&rft.isbn=0367344211&rft.isbn_list=9780367344214&rft_id=info:doi/10.1201/9780429330179-6&rft_dat=%3Cproquest_infor%3EEBC5893765_114_122%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780429330179&rft.eisbn_list=0429330170&rft.eisbn_list=1000682560&rft.eisbn_list=9781000682564&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5893765_114_122&rft_id=info:pmid/&rfr_iscdi=true |