Modeling with Differential Equations
The most basic differential equation model is one that is composed of a single first order differential equation. This kind of model is used to represent the dynamics of a single state variable. The most basic type of first order differential equation model is constructed by identifying all of the v...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 218 |
---|---|
container_issue | |
container_start_page | 165 |
container_title | |
container_volume | 1 |
creator | Arangala, Crista Luke, Nicholas S. Yokley, Karen A. |
description | The most basic differential equation model is one that is composed of a single first order differential equation. This kind of model is used to represent the dynamics of a single state variable. The most basic type of first order differential equation model is constructed by identifying all of the various interactions or events that cause a change in the state variable of interest. Analytical solutions are exact, and can be algebraically manipulated to answer a variety of questions. Numerical solutions are approximate and subject to some level of error. Industrial Occupations University is a local trade school that wants to grow its enrollment. In deriving differential equation models of higher order, people need o consider a state variable of interest and formulate an equation based on the state variable and its derivatives which dictate the dynamics of the desired system. |
doi_str_mv | 10.1201/9781315120645-4 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_5254481_29_178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5254481_29_178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1548-a49fa1b5a2d8868245373b290efe39327583fe4fdb3e630a8b7a527f1395eb903</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhiOiqLVnrz14Xc3ko5kcpdYqKF4UvIVkN7HBddMmW4v_3i0VwdPMc3gfZl5CLoBeAaNwrRUCBznsUyErcUDO_vDtcAChUSmqAI4HoIwpRMHwhIxLiY5yQGBS61Ny-ZQa38bufbKN_XJyG0Pw2Xd9tO1kvt7YPqaunJOjYNvix79zRF7v5i-z--rxefEwu3msapACKyt0sOCkZQ3iFJmQXHHHNPXBc82ZksiDF6Fx3E85teiUlUwF4Fp6pykfEb73rnJab3zpjXcpfdTDPdm29dKuep-LkUwKgWCYNqBwSC32qdiFlD_tNuW2Mb39blMO2XZ1LDtLMUDNrjvzrzsjzNcgHd5k_AcjlWHI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC5254481_29_178</pqid></control><display><type>book_chapter</type><title>Modeling with Differential Equations</title><source>Taylor & Francis eBooks A-Z</source><creator>Arangala, Crista ; Luke, Nicholas S. ; Yokley, Karen A.</creator><creatorcontrib>Arangala, Crista ; Luke, Nicholas S. ; Yokley, Karen A.</creatorcontrib><description>The most basic differential equation model is one that is composed of a single first order differential equation. This kind of model is used to represent the dynamics of a single state variable. The most basic type of first order differential equation model is constructed by identifying all of the various interactions or events that cause a change in the state variable of interest. Analytical solutions are exact, and can be algebraically manipulated to answer a variety of questions. Numerical solutions are approximate and subject to some level of error. Industrial Occupations University is a local trade school that wants to grow its enrollment. In deriving differential equation models of higher order, people need o consider a state variable of interest and formulate an equation based on the state variable and its derivatives which dictate the dynamics of the desired system.</description><edition>1</edition><identifier>ISBN: 1498770711</identifier><identifier>ISBN: 9781498770712</identifier><identifier>EISBN: 131512064X</identifier><identifier>EISBN: 9781315120645</identifier><identifier>EISBN: 9781498770736</identifier><identifier>EISBN: 1498770738</identifier><identifier>DOI: 10.1201/9781315120645-4</identifier><identifier>OCLC: 1022788428</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><ispartof>Mathematical Modeling, 2018, Vol.1, p.165-218</ispartof><rights>2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1548-a49fa1b5a2d8868245373b290efe39327583fe4fdb3e630a8b7a527f1395eb903</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/5254481-l.jpg</thumbnail><link.rule.ids>779,780,784,793,4041,27924</link.rule.ids></links><search><creatorcontrib>Arangala, Crista</creatorcontrib><creatorcontrib>Luke, Nicholas S.</creatorcontrib><creatorcontrib>Yokley, Karen A.</creatorcontrib><title>Modeling with Differential Equations</title><title>Mathematical Modeling</title><description>The most basic differential equation model is one that is composed of a single first order differential equation. This kind of model is used to represent the dynamics of a single state variable. The most basic type of first order differential equation model is constructed by identifying all of the various interactions or events that cause a change in the state variable of interest. Analytical solutions are exact, and can be algebraically manipulated to answer a variety of questions. Numerical solutions are approximate and subject to some level of error. Industrial Occupations University is a local trade school that wants to grow its enrollment. In deriving differential equation models of higher order, people need o consider a state variable of interest and formulate an equation based on the state variable and its derivatives which dictate the dynamics of the desired system.</description><isbn>1498770711</isbn><isbn>9781498770712</isbn><isbn>131512064X</isbn><isbn>9781315120645</isbn><isbn>9781498770736</isbn><isbn>1498770738</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2018</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkE1LAzEQhiOiqLVnrz14Xc3ko5kcpdYqKF4UvIVkN7HBddMmW4v_3i0VwdPMc3gfZl5CLoBeAaNwrRUCBznsUyErcUDO_vDtcAChUSmqAI4HoIwpRMHwhIxLiY5yQGBS61Ny-ZQa38bufbKN_XJyG0Pw2Xd9tO1kvt7YPqaunJOjYNvix79zRF7v5i-z--rxefEwu3msapACKyt0sOCkZQ3iFJmQXHHHNPXBc82ZksiDF6Fx3E85teiUlUwF4Fp6pykfEb73rnJab3zpjXcpfdTDPdm29dKuep-LkUwKgWCYNqBwSC32qdiFlD_tNuW2Mb39blMO2XZ1LDtLMUDNrjvzrzsjzNcgHd5k_AcjlWHI</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Arangala, Crista</creator><creator>Luke, Nicholas S.</creator><creator>Yokley, Karen A.</creator><general>CRC Press</general><general>CRC Press LLC</general><scope>FFUUA</scope></search><sort><creationdate>2018</creationdate><title>Modeling with Differential Equations</title><author>Arangala, Crista ; Luke, Nicholas S. ; Yokley, Karen A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1548-a49fa1b5a2d8868245373b290efe39327583fe4fdb3e630a8b7a527f1395eb903</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Arangala, Crista</creatorcontrib><creatorcontrib>Luke, Nicholas S.</creatorcontrib><creatorcontrib>Yokley, Karen A.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arangala, Crista</au><au>Luke, Nicholas S.</au><au>Yokley, Karen A.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Modeling with Differential Equations</atitle><btitle>Mathematical Modeling</btitle><date>2018</date><risdate>2018</risdate><volume>1</volume><spage>165</spage><epage>218</epage><pages>165-218</pages><isbn>1498770711</isbn><isbn>9781498770712</isbn><eisbn>131512064X</eisbn><eisbn>9781315120645</eisbn><eisbn>9781498770736</eisbn><eisbn>1498770738</eisbn><abstract>The most basic differential equation model is one that is composed of a single first order differential equation. This kind of model is used to represent the dynamics of a single state variable. The most basic type of first order differential equation model is constructed by identifying all of the various interactions or events that cause a change in the state variable of interest. Analytical solutions are exact, and can be algebraically manipulated to answer a variety of questions. Numerical solutions are approximate and subject to some level of error. Industrial Occupations University is a local trade school that wants to grow its enrollment. In deriving differential equation models of higher order, people need o consider a state variable of interest and formulate an equation based on the state variable and its derivatives which dictate the dynamics of the desired system.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/9781315120645-4</doi><oclcid>1022788428</oclcid><tpages>54</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISBN: 1498770711 |
ispartof | Mathematical Modeling, 2018, Vol.1, p.165-218 |
issn | |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_5254481_29_178 |
source | Taylor & Francis eBooks A-Z |
title | Modeling with Differential Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Modeling%20with%20Differential%20Equations&rft.btitle=Mathematical%20Modeling&rft.au=Arangala,%20Crista&rft.date=2018&rft.volume=1&rft.spage=165&rft.epage=218&rft.pages=165-218&rft.isbn=1498770711&rft.isbn_list=9781498770712&rft_id=info:doi/10.1201/9781315120645-4&rft_dat=%3Cproquest_infor%3EEBC5254481_29_178%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=131512064X&rft.eisbn_list=9781315120645&rft.eisbn_list=9781498770736&rft.eisbn_list=1498770738&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5254481_29_178&rft_id=info:pmid/&rfr_iscdi=true |