Modeling with Calculus

The derivative of a differentiable function describes the original function's instantaneous rate of change at any particular input. When a differentiable function is used as a model to describe an application, the first and second derivatives of that function can provide valuable information ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Arangala, Crista, Luke, Nicholas S., Yokley, Karen A.
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue
container_start_page 49
container_title
container_volume 1
creator Arangala, Crista
Luke, Nicholas S.
Yokley, Karen A.
description The derivative of a differentiable function describes the original function's instantaneous rate of change at any particular input. When a differentiable function is used as a model to describe an application, the first and second derivatives of that function can provide valuable information about the situation being modeled. This chapter focuses on how derivatives can be used to learn more about applications. Optimization itself means the process of optimizing a situation or creating the best outcome possible. One powerful tool in mathematical optimization is recognizing that a continuous function has relative high or low points when the derivative of that function changes sign. The chapter provides a review of calculus related to optimization as well as investigating situations where multiple aspects need to be considered to create the best mathematical outcome. It shows how to view an integral as the accumulation of a particular quantity and how to connect the accumulation concept to applications.
doi_str_mv 10.1201/9781315120645-2
format Book Chapter
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_5254481_14_62</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5254481_14_62</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1072-4278d863c5bb9bb2d8ad010005ac051b66100285bf3f4644595ec8b88cf4ae003</originalsourceid><addsrcrecordid>eNpVkEFLAzEQhSOiqLVXvfYPrM7MJrvZoxStQsWLgreQZLM2uG5qsrX4702pCJ7mfYf3MTzGLhGukACvm1piiSLniouCDtjZH74eZuCNrGuoEY8zAFEtJSd5wqYpeQMlSiTRNKfs4jG0rvfD22zrx9Vsrnu76TfpnB11uk9u-nsn7OXu9nl-XyyfFg_zm2XhEWoqePa2siqtMKYxhlqpW0AAENqCQFNVGUgK05UdrzgXjXBWGiltx7UDKCeM9t51DJ8bl0blTAjv1g1jzK-s9Hp0MSlBgnOJCrmqKJcW-5IfuhA_9DbEvlWj_u5D7KIerE87SVIIajeW-jeWIvWVnT4MVP4AS2Rb5g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC5254481_14_62</pqid></control><display><type>book_chapter</type><title>Modeling with Calculus</title><source>Taylor &amp; Francis eBooks A-Z</source><creator>Arangala, Crista ; Luke, Nicholas S. ; Yokley, Karen A.</creator><creatorcontrib>Arangala, Crista ; Luke, Nicholas S. ; Yokley, Karen A.</creatorcontrib><description>The derivative of a differentiable function describes the original function's instantaneous rate of change at any particular input. When a differentiable function is used as a model to describe an application, the first and second derivatives of that function can provide valuable information about the situation being modeled. This chapter focuses on how derivatives can be used to learn more about applications. Optimization itself means the process of optimizing a situation or creating the best outcome possible. One powerful tool in mathematical optimization is recognizing that a continuous function has relative high or low points when the derivative of that function changes sign. The chapter provides a review of calculus related to optimization as well as investigating situations where multiple aspects need to be considered to create the best mathematical outcome. It shows how to view an integral as the accumulation of a particular quantity and how to connect the accumulation concept to applications.</description><edition>1</edition><identifier>ISBN: 1498770711</identifier><identifier>ISBN: 9781498770712</identifier><identifier>EISBN: 131512064X</identifier><identifier>EISBN: 9781315120645</identifier><identifier>EISBN: 9781498770736</identifier><identifier>EISBN: 1498770738</identifier><identifier>DOI: 10.1201/9781315120645-2</identifier><identifier>OCLC: 1022788428</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><ispartof>Mathematical Modeling, 2018, Vol.1, p.49-103</ispartof><rights>2018 by Taylor &amp; Francis Group, LLC CRC Press is an imprint of Taylor &amp; Francis Group, an Informa business</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/5254481-l.jpg</thumbnail><link.rule.ids>779,780,784,793,4041,27924</link.rule.ids></links><search><creatorcontrib>Arangala, Crista</creatorcontrib><creatorcontrib>Luke, Nicholas S.</creatorcontrib><creatorcontrib>Yokley, Karen A.</creatorcontrib><title>Modeling with Calculus</title><title>Mathematical Modeling</title><description>The derivative of a differentiable function describes the original function's instantaneous rate of change at any particular input. When a differentiable function is used as a model to describe an application, the first and second derivatives of that function can provide valuable information about the situation being modeled. This chapter focuses on how derivatives can be used to learn more about applications. Optimization itself means the process of optimizing a situation or creating the best outcome possible. One powerful tool in mathematical optimization is recognizing that a continuous function has relative high or low points when the derivative of that function changes sign. The chapter provides a review of calculus related to optimization as well as investigating situations where multiple aspects need to be considered to create the best mathematical outcome. It shows how to view an integral as the accumulation of a particular quantity and how to connect the accumulation concept to applications.</description><isbn>1498770711</isbn><isbn>9781498770712</isbn><isbn>131512064X</isbn><isbn>9781315120645</isbn><isbn>9781498770736</isbn><isbn>1498770738</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2018</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkEFLAzEQhSOiqLVXvfYPrM7MJrvZoxStQsWLgreQZLM2uG5qsrX4702pCJ7mfYf3MTzGLhGukACvm1piiSLniouCDtjZH74eZuCNrGuoEY8zAFEtJSd5wqYpeQMlSiTRNKfs4jG0rvfD22zrx9Vsrnu76TfpnB11uk9u-nsn7OXu9nl-XyyfFg_zm2XhEWoqePa2siqtMKYxhlqpW0AAENqCQFNVGUgK05UdrzgXjXBWGiltx7UDKCeM9t51DJ8bl0blTAjv1g1jzK-s9Hp0MSlBgnOJCrmqKJcW-5IfuhA_9DbEvlWj_u5D7KIerE87SVIIajeW-jeWIvWVnT4MVP4AS2Rb5g</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Arangala, Crista</creator><creator>Luke, Nicholas S.</creator><creator>Yokley, Karen A.</creator><general>CRC Press</general><general>CRC Press LLC</general><scope>FFUUA</scope></search><sort><creationdate>2018</creationdate><title>Modeling with Calculus</title><author>Arangala, Crista ; Luke, Nicholas S. ; Yokley, Karen A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1072-4278d863c5bb9bb2d8ad010005ac051b66100285bf3f4644595ec8b88cf4ae003</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Arangala, Crista</creatorcontrib><creatorcontrib>Luke, Nicholas S.</creatorcontrib><creatorcontrib>Yokley, Karen A.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arangala, Crista</au><au>Luke, Nicholas S.</au><au>Yokley, Karen A.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Modeling with Calculus</atitle><btitle>Mathematical Modeling</btitle><date>2018</date><risdate>2018</risdate><volume>1</volume><spage>49</spage><epage>103</epage><pages>49-103</pages><isbn>1498770711</isbn><isbn>9781498770712</isbn><eisbn>131512064X</eisbn><eisbn>9781315120645</eisbn><eisbn>9781498770736</eisbn><eisbn>1498770738</eisbn><abstract>The derivative of a differentiable function describes the original function's instantaneous rate of change at any particular input. When a differentiable function is used as a model to describe an application, the first and second derivatives of that function can provide valuable information about the situation being modeled. This chapter focuses on how derivatives can be used to learn more about applications. Optimization itself means the process of optimizing a situation or creating the best outcome possible. One powerful tool in mathematical optimization is recognizing that a continuous function has relative high or low points when the derivative of that function changes sign. The chapter provides a review of calculus related to optimization as well as investigating situations where multiple aspects need to be considered to create the best mathematical outcome. It shows how to view an integral as the accumulation of a particular quantity and how to connect the accumulation concept to applications.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/9781315120645-2</doi><oclcid>1022788428</oclcid><tpages>55</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISBN: 1498770711
ispartof Mathematical Modeling, 2018, Vol.1, p.49-103
issn
language eng
recordid cdi_proquest_ebookcentralchapters_5254481_14_62
source Taylor & Francis eBooks A-Z
title Modeling with Calculus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Modeling%20with%20Calculus&rft.btitle=Mathematical%20Modeling&rft.au=Arangala,%20Crista&rft.date=2018&rft.volume=1&rft.spage=49&rft.epage=103&rft.pages=49-103&rft.isbn=1498770711&rft.isbn_list=9781498770712&rft_id=info:doi/10.1201/9781315120645-2&rft_dat=%3Cproquest_infor%3EEBC5254481_14_62%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=131512064X&rft.eisbn_list=9781315120645&rft.eisbn_list=9781498770736&rft.eisbn_list=1498770738&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5254481_14_62&rft_id=info:pmid/&rfr_iscdi=true