Chi-Square Test

Often researchers use the chi‐square test in genetics for tests of Hardy‐Weinberg equilibrium and for comparing expected and observed offspring phenotypes. The chi‐square test is used on categorical variables. The chi‐square test examines the difference between expected and observed distributions. S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Godde, Kanya, Weaver, Kathleen F, Dunn, Sarah L, Weaver, Pablo F, Morales, Vanessa C
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 434
container_issue
container_start_page 393
container_title
container_volume
creator Godde, Kanya
Weaver, Kathleen F
Dunn, Sarah L
Weaver, Pablo F
Morales, Vanessa C
description Often researchers use the chi‐square test in genetics for tests of Hardy‐Weinberg equilibrium and for comparing expected and observed offspring phenotypes. The chi‐square test is used on categorical variables. The chi‐square test examines the difference between expected and observed distributions. Specifically, this chapter looks at a goodness‐of‐fit test, comparing the expected frequency (which is the value that we expect to see based on the literature background material or a hypothesis generated as part of an experiment) to the observed frequency (which is the value actually observed as part of an experiment or study). The following assumptions must be satisfied in order to run a chi‐square: data type; and independence. In the chapter, statistical programs are used to perform a chi‐square test and determine significance. And also, the relationship between the observed and expected is evaluated and a logical conclusion for each scenario is constructed.
doi_str_mv 10.1002/9781119454205.ch9
format Book Chapter
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_4940794_234_409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4940794_234_409</sourcerecordid><originalsourceid>FETCH-LOGICAL-p125f-383d1f0b73d918611c31d14b22b86ebc2ddfa409d8f3aa04b4588451813703c03</originalsourceid><addsrcrecordid>eNptj09PwzAMxYMQCBgVZ258gQ47dtrkiCr-SZM4MM5R2qRqYWJd2wnBpydlu0ziYFnP_j3LT4hrhDkCyFuTa0Q0rFiCmleNORIX00Aakxk8FskemLTm07gEAGJFpM5EMgzvUaImncvsXFwVTZu-brauDzfLMIyX4qR2qyEk-z4Tbw_3y-IpXbw8Phd3i7RDqeqUNHmsoczJG9QZYkXokUspS52FspLe147BeF2Tc8AlK61ZoUbKgSqgmcDd3a92Fb5tKNfrj8Ei2CmiPYhoY8Spoif9x3PI_rTdH9_5OvK847t-vdnGcDtLFT7H3q2qxnVj6AfLhiE3bCWxjS_TL1v4X94</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC4940794_234_409</pqid></control><display><type>book_chapter</type><title>Chi-Square Test</title><source>Wiley Online Library All Obooks</source><source>Ebook Central Perpetual and DDA</source><creator>Godde, Kanya ; Weaver, Kathleen F ; Dunn, Sarah L ; Weaver, Pablo F ; Morales, Vanessa C</creator><contributor>Godde, Kanya ; Weaver, Kathleen F ; Weaver, Pablo F ; Morales, Vanessa ; Dunn, Sarah L</contributor><creatorcontrib>Godde, Kanya ; Weaver, Kathleen F ; Dunn, Sarah L ; Weaver, Pablo F ; Morales, Vanessa C ; Godde, Kanya ; Weaver, Kathleen F ; Weaver, Pablo F ; Morales, Vanessa ; Dunn, Sarah L</creatorcontrib><description>Often researchers use the chi‐square test in genetics for tests of Hardy‐Weinberg equilibrium and for comparing expected and observed offspring phenotypes. The chi‐square test is used on categorical variables. The chi‐square test examines the difference between expected and observed distributions. Specifically, this chapter looks at a goodness‐of‐fit test, comparing the expected frequency (which is the value that we expect to see based on the literature background material or a hypothesis generated as part of an experiment) to the observed frequency (which is the value actually observed as part of an experiment or study). The following assumptions must be satisfied in order to run a chi‐square: data type; and independence. In the chapter, statistical programs are used to perform a chi‐square test and determine significance. And also, the relationship between the observed and expected is evaluated and a logical conclusion for each scenario is constructed.</description><identifier>ISBN: 9781119299684</identifier><identifier>ISBN: 1119299683</identifier><identifier>EISBN: 1119299691</identifier><identifier>EISBN: 9781119299691</identifier><identifier>EISBN: 9781119454205</identifier><identifier>EISBN: 1119454204</identifier><identifier>DOI: 10.1002/9781119454205.ch9</identifier><identifier>OCLC: 1000345335</identifier><identifier>LCCallNum: QA276.4.I587 2018</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Incorporated</publisher><subject>chi‐square test ; data type ; goodness‐of‐fit test ; independence ; MATHEMATICS ; Public health &amp; preventive medicine ; statistical analysis</subject><ispartof>An Introduction to Statistical Analysis in Research, 2017, p.393-434</ispartof><rights>Copyright © 2018 John Wiley &amp; Sons, Inc. All rights reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/4940794-l.jpg</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119454205.ch9$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002/9781119454205.ch9$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>775,776,780,789,4309,27902,52507,52655</link.rule.ids></links><search><contributor>Godde, Kanya</contributor><contributor>Weaver, Kathleen F</contributor><contributor>Weaver, Pablo F</contributor><contributor>Morales, Vanessa</contributor><contributor>Dunn, Sarah L</contributor><creatorcontrib>Godde, Kanya</creatorcontrib><creatorcontrib>Weaver, Kathleen F</creatorcontrib><creatorcontrib>Dunn, Sarah L</creatorcontrib><creatorcontrib>Weaver, Pablo F</creatorcontrib><creatorcontrib>Morales, Vanessa C</creatorcontrib><title>Chi-Square Test</title><title>An Introduction to Statistical Analysis in Research</title><description>Often researchers use the chi‐square test in genetics for tests of Hardy‐Weinberg equilibrium and for comparing expected and observed offspring phenotypes. The chi‐square test is used on categorical variables. The chi‐square test examines the difference between expected and observed distributions. Specifically, this chapter looks at a goodness‐of‐fit test, comparing the expected frequency (which is the value that we expect to see based on the literature background material or a hypothesis generated as part of an experiment) to the observed frequency (which is the value actually observed as part of an experiment or study). The following assumptions must be satisfied in order to run a chi‐square: data type; and independence. In the chapter, statistical programs are used to perform a chi‐square test and determine significance. And also, the relationship between the observed and expected is evaluated and a logical conclusion for each scenario is constructed.</description><subject>chi‐square test</subject><subject>data type</subject><subject>goodness‐of‐fit test</subject><subject>independence</subject><subject>MATHEMATICS</subject><subject>Public health &amp; preventive medicine</subject><subject>statistical analysis</subject><isbn>9781119299684</isbn><isbn>1119299683</isbn><isbn>1119299691</isbn><isbn>9781119299691</isbn><isbn>9781119454205</isbn><isbn>1119454204</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2017</creationdate><recordtype>book_chapter</recordtype><recordid>eNptj09PwzAMxYMQCBgVZ258gQ47dtrkiCr-SZM4MM5R2qRqYWJd2wnBpydlu0ziYFnP_j3LT4hrhDkCyFuTa0Q0rFiCmleNORIX00Aakxk8FskemLTm07gEAGJFpM5EMgzvUaImncvsXFwVTZu-brauDzfLMIyX4qR2qyEk-z4Tbw_3y-IpXbw8Phd3i7RDqeqUNHmsoczJG9QZYkXokUspS52FspLe147BeF2Tc8AlK61ZoUbKgSqgmcDd3a92Fb5tKNfrj8Ei2CmiPYhoY8Spoif9x3PI_rTdH9_5OvK847t-vdnGcDtLFT7H3q2qxnVj6AfLhiE3bCWxjS_TL1v4X94</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Godde, Kanya</creator><creator>Weaver, Kathleen F</creator><creator>Dunn, Sarah L</creator><creator>Weaver, Pablo F</creator><creator>Morales, Vanessa C</creator><general>John Wiley &amp; Sons, Incorporated</general><general>John Wiley &amp; Sons, Inc</general><scope>FFUUA</scope></search><sort><creationdate>2017</creationdate><title>Chi-Square Test</title><author>Godde, Kanya ; Weaver, Kathleen F ; Dunn, Sarah L ; Weaver, Pablo F ; Morales, Vanessa C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p125f-383d1f0b73d918611c31d14b22b86ebc2ddfa409d8f3aa04b4588451813703c03</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2017</creationdate><topic>chi‐square test</topic><topic>data type</topic><topic>goodness‐of‐fit test</topic><topic>independence</topic><topic>MATHEMATICS</topic><topic>Public health &amp; preventive medicine</topic><topic>statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Godde, Kanya</creatorcontrib><creatorcontrib>Weaver, Kathleen F</creatorcontrib><creatorcontrib>Dunn, Sarah L</creatorcontrib><creatorcontrib>Weaver, Pablo F</creatorcontrib><creatorcontrib>Morales, Vanessa C</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godde, Kanya</au><au>Weaver, Kathleen F</au><au>Dunn, Sarah L</au><au>Weaver, Pablo F</au><au>Morales, Vanessa C</au><au>Godde, Kanya</au><au>Weaver, Kathleen F</au><au>Weaver, Pablo F</au><au>Morales, Vanessa</au><au>Dunn, Sarah L</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Chi-Square Test</atitle><btitle>An Introduction to Statistical Analysis in Research</btitle><date>2017</date><risdate>2017</risdate><spage>393</spage><epage>434</epage><pages>393-434</pages><isbn>9781119299684</isbn><isbn>1119299683</isbn><eisbn>1119299691</eisbn><eisbn>9781119299691</eisbn><eisbn>9781119454205</eisbn><eisbn>1119454204</eisbn><abstract>Often researchers use the chi‐square test in genetics for tests of Hardy‐Weinberg equilibrium and for comparing expected and observed offspring phenotypes. The chi‐square test is used on categorical variables. The chi‐square test examines the difference between expected and observed distributions. Specifically, this chapter looks at a goodness‐of‐fit test, comparing the expected frequency (which is the value that we expect to see based on the literature background material or a hypothesis generated as part of an experiment) to the observed frequency (which is the value actually observed as part of an experiment or study). The following assumptions must be satisfied in order to run a chi‐square: data type; and independence. In the chapter, statistical programs are used to perform a chi‐square test and determine significance. And also, the relationship between the observed and expected is evaluated and a logical conclusion for each scenario is constructed.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Incorporated</pub><doi>10.1002/9781119454205.ch9</doi><oclcid>1000345335</oclcid><tpages>42</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9781119299684
ispartof An Introduction to Statistical Analysis in Research, 2017, p.393-434
issn
language eng
recordid cdi_proquest_ebookcentralchapters_4940794_234_409
source Wiley Online Library All Obooks; Ebook Central Perpetual and DDA
subjects chi‐square test
data type
goodness‐of‐fit test
independence
MATHEMATICS
Public health & preventive medicine
statistical analysis
title Chi-Square Test
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Chi-Square%20Test&rft.btitle=An%20Introduction%20to%20Statistical%20Analysis%20in%20Research&rft.au=Godde,%20Kanya&rft.date=2017&rft.spage=393&rft.epage=434&rft.pages=393-434&rft.isbn=9781119299684&rft.isbn_list=1119299683&rft_id=info:doi/10.1002/9781119454205.ch9&rft_dat=%3Cproquest_wiley%3EEBC4940794_234_409%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=1119299691&rft.eisbn_list=9781119299691&rft.eisbn_list=9781119454205&rft.eisbn_list=1119454204&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4940794_234_409&rft_id=info:pmid/&rfr_iscdi=true