Routes for Drug Delivery: Sustained-Release Devices

Several different technologies exist for sustained-release drug delivery devices, including: (1) nonbiodegradable implants; (2) biodegradable implants; (3) micro- and nanoparticles; (4) liposomes, and (5) encapsulated cell technology (ECT). Currently, the only sustained-release devices approved by t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yun, Samuel, Huang, John J.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue
container_start_page 84
container_title
container_volume 55
creator Yun, Samuel
Huang, John J.
description Several different technologies exist for sustained-release drug delivery devices, including: (1) nonbiodegradable implants; (2) biodegradable implants; (3) micro- and nanoparticles; (4) liposomes, and (5) encapsulated cell technology (ECT). Currently, the only sustained-release devices approved by the Food and Drug Administration are the ganciclovir implant for the treatment of cytomegalovirus retinitis, the fluocinolone acetonide implant for the treatment of noninfectious posterior uveitis and the dexamethasone implant for the treatment of diabetic macular edema or noninfectious posterior uveitis. The first two implants are nonbiodegradable and require surgical placement, whereas the dexamethasone implant is biodegradable, and can be shaped and injected using a small-gauge needle or applicator into the vitreous. ECT, currently in a phase II clinical trial, utilizes modified retinal pigment epithelium cells to produce protein drug molecules in the vitreous. The microparticle, nanoparticle and liposome technology currently in development may offer the most flexibility for prolonged drug release and combination therapy for retinal diseases.
doi_str_mv 10.1159/000434692
format Book Chapter
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_4395885_84_101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4395885_84_101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-49949989e22970e1a057e85bec606abe478f802325ae53110bffad4fa74b87203</originalsourceid><addsrcrecordid>eNpdkUtLw1AQha_vVu3CPyB15yY6c9_XndQnCELVdbhJJzU2beq9SaH_3kjrRhiYxfnOYQ7D2BnCFaJy1wAghdSO77BjIdCCUlrJXdZHrXnCjYM9NnDG_mkS91kfuIJEGIWHrO8kGgBldI8NYvzq8lAZLq05Yj2uFaBD0WdiXLcNxWFRh-FdaKfDO6rKFYX1zfCtjY0vFzRJxlSRj9RpqzKneMoOCl9FGmz3Cft4uH8fPSUvr4_Po9uXJBccm0Q61411xLkzQOi7Y8iqjHIN2mckjS0scMGVJyUQISsKP5GFNzKzhoM4YZeb3GWov1uKTTovY05V5RdUtzFFwy1X2hnRoedbtM3mNEmXoZz7sE7_inaA-JdFWV3Pclo0wVf5p182FGIqhVPWqtTKFAE718XGNfNhSmHjiZFCSb_s73vEDzOTdfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC4395885_84_101</pqid></control><display><type>book_chapter</type><title>Routes for Drug Delivery: Sustained-Release Devices</title><source>Karger eBooks Collection</source><source>MEDLINE</source><creator>Yun, Samuel ; Huang, John J.</creator><contributor>Rodrigues, E. B ; Do, D. V ; Mieler, W. F ; Farah, M. E ; Nguyen, Q. D</contributor><creatorcontrib>Yun, Samuel ; Huang, John J. ; Rodrigues, E. B ; Do, D. V ; Mieler, W. F ; Farah, M. E ; Nguyen, Q. D</creatorcontrib><description>Several different technologies exist for sustained-release drug delivery devices, including: (1) nonbiodegradable implants; (2) biodegradable implants; (3) micro- and nanoparticles; (4) liposomes, and (5) encapsulated cell technology (ECT). Currently, the only sustained-release devices approved by the Food and Drug Administration are the ganciclovir implant for the treatment of cytomegalovirus retinitis, the fluocinolone acetonide implant for the treatment of noninfectious posterior uveitis and the dexamethasone implant for the treatment of diabetic macular edema or noninfectious posterior uveitis. The first two implants are nonbiodegradable and require surgical placement, whereas the dexamethasone implant is biodegradable, and can be shaped and injected using a small-gauge needle or applicator into the vitreous. ECT, currently in a phase II clinical trial, utilizes modified retinal pigment epithelium cells to produce protein drug molecules in the vitreous. The microparticle, nanoparticle and liposome technology currently in development may offer the most flexibility for prolonged drug release and combination therapy for retinal diseases.</description><identifier>ISSN: 0250-3751</identifier><identifier>ISBN: 9783318055641</identifier><identifier>ISBN: 3318055646</identifier><identifier>EISSN: 1662-2790</identifier><identifier>EISBN: 3318055654</identifier><identifier>EISBN: 9783318055658</identifier><identifier>DOI: 10.1159/000434692</identifier><identifier>OCLC: 941700576</identifier><identifier>PMID: 26501913</identifier><identifier>LCCallNum: RE551 -- .R48 2016eb</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Chapter ; Delayed-Action Preparations ; Drug Administration Routes ; Drug Delivery Systems ; Drug Implants ; Humans ; Liposomes ; Nanoparticles ; Ophthalmology ; Retinal Diseases - drug therapy</subject><ispartof>Developments in ophthalmology, 2016, Vol.55, p.84-92</ispartof><rights>2016 S. Karger AG, Basel</rights><rights>2016 S. Karger AG, Basel.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-49949989e22970e1a057e85bec606abe478f802325ae53110bffad4fa74b87203</citedby><relation>Retinal Pharmacotherapeutics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/4395885-l.jpg</thumbnail><link.rule.ids>775,776,780,789,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26501913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rodrigues, E. B</contributor><contributor>Do, D. V</contributor><contributor>Mieler, W. F</contributor><contributor>Farah, M. E</contributor><contributor>Nguyen, Q. D</contributor><creatorcontrib>Yun, Samuel</creatorcontrib><creatorcontrib>Huang, John J.</creatorcontrib><title>Routes for Drug Delivery: Sustained-Release Devices</title><title>Developments in ophthalmology</title><addtitle>Dev Ophthalmol</addtitle><description>Several different technologies exist for sustained-release drug delivery devices, including: (1) nonbiodegradable implants; (2) biodegradable implants; (3) micro- and nanoparticles; (4) liposomes, and (5) encapsulated cell technology (ECT). Currently, the only sustained-release devices approved by the Food and Drug Administration are the ganciclovir implant for the treatment of cytomegalovirus retinitis, the fluocinolone acetonide implant for the treatment of noninfectious posterior uveitis and the dexamethasone implant for the treatment of diabetic macular edema or noninfectious posterior uveitis. The first two implants are nonbiodegradable and require surgical placement, whereas the dexamethasone implant is biodegradable, and can be shaped and injected using a small-gauge needle or applicator into the vitreous. ECT, currently in a phase II clinical trial, utilizes modified retinal pigment epithelium cells to produce protein drug molecules in the vitreous. The microparticle, nanoparticle and liposome technology currently in development may offer the most flexibility for prolonged drug release and combination therapy for retinal diseases.</description><subject>Chapter</subject><subject>Delayed-Action Preparations</subject><subject>Drug Administration Routes</subject><subject>Drug Delivery Systems</subject><subject>Drug Implants</subject><subject>Humans</subject><subject>Liposomes</subject><subject>Nanoparticles</subject><subject>Ophthalmology</subject><subject>Retinal Diseases - drug therapy</subject><issn>0250-3751</issn><issn>1662-2790</issn><isbn>9783318055641</isbn><isbn>3318055646</isbn><isbn>3318055654</isbn><isbn>9783318055658</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2016</creationdate><recordtype>book_chapter</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLw1AQha_vVu3CPyB15yY6c9_XndQnCELVdbhJJzU2beq9SaH_3kjrRhiYxfnOYQ7D2BnCFaJy1wAghdSO77BjIdCCUlrJXdZHrXnCjYM9NnDG_mkS91kfuIJEGIWHrO8kGgBldI8NYvzq8lAZLq05Yj2uFaBD0WdiXLcNxWFRh-FdaKfDO6rKFYX1zfCtjY0vFzRJxlSRj9RpqzKneMoOCl9FGmz3Cft4uH8fPSUvr4_Po9uXJBccm0Q61411xLkzQOi7Y8iqjHIN2mckjS0scMGVJyUQISsKP5GFNzKzhoM4YZeb3GWov1uKTTovY05V5RdUtzFFwy1X2hnRoedbtM3mNEmXoZz7sE7_inaA-JdFWV3Pclo0wVf5p182FGIqhVPWqtTKFAE718XGNfNhSmHjiZFCSb_s73vEDzOTdfY</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Yun, Samuel</creator><creator>Huang, John J.</creator><general>S. Karger AG</general><scope>FFUUA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160101</creationdate><title>Routes for Drug Delivery: Sustained-Release Devices</title><author>Yun, Samuel ; Huang, John J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-49949989e22970e1a057e85bec606abe478f802325ae53110bffad4fa74b87203</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chapter</topic><topic>Delayed-Action Preparations</topic><topic>Drug Administration Routes</topic><topic>Drug Delivery Systems</topic><topic>Drug Implants</topic><topic>Humans</topic><topic>Liposomes</topic><topic>Nanoparticles</topic><topic>Ophthalmology</topic><topic>Retinal Diseases - drug therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Samuel</creatorcontrib><creatorcontrib>Huang, John J.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Samuel</au><au>Huang, John J.</au><au>Rodrigues, E. B</au><au>Do, D. V</au><au>Mieler, W. F</au><au>Farah, M. E</au><au>Nguyen, Q. D</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Routes for Drug Delivery: Sustained-Release Devices</atitle><btitle>Developments in ophthalmology</btitle><addtitle>Dev Ophthalmol</addtitle><seriestitle>Retinal Pharmacotherapeutics</seriestitle><date>2016-01-01</date><risdate>2016</risdate><volume>55</volume><spage>84</spage><epage>92</epage><pages>84-92</pages><issn>0250-3751</issn><eissn>1662-2790</eissn><isbn>9783318055641</isbn><isbn>3318055646</isbn><eisbn>3318055654</eisbn><eisbn>9783318055658</eisbn><abstract>Several different technologies exist for sustained-release drug delivery devices, including: (1) nonbiodegradable implants; (2) biodegradable implants; (3) micro- and nanoparticles; (4) liposomes, and (5) encapsulated cell technology (ECT). Currently, the only sustained-release devices approved by the Food and Drug Administration are the ganciclovir implant for the treatment of cytomegalovirus retinitis, the fluocinolone acetonide implant for the treatment of noninfectious posterior uveitis and the dexamethasone implant for the treatment of diabetic macular edema or noninfectious posterior uveitis. The first two implants are nonbiodegradable and require surgical placement, whereas the dexamethasone implant is biodegradable, and can be shaped and injected using a small-gauge needle or applicator into the vitreous. ECT, currently in a phase II clinical trial, utilizes modified retinal pigment epithelium cells to produce protein drug molecules in the vitreous. The microparticle, nanoparticle and liposome technology currently in development may offer the most flexibility for prolonged drug release and combination therapy for retinal diseases.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>26501913</pmid><doi>10.1159/000434692</doi><oclcid>941700576</oclcid><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0250-3751
ispartof Developments in ophthalmology, 2016, Vol.55, p.84-92
issn 0250-3751
1662-2790
language eng
recordid cdi_proquest_ebookcentralchapters_4395885_84_101
source Karger eBooks Collection; MEDLINE
subjects Chapter
Delayed-Action Preparations
Drug Administration Routes
Drug Delivery Systems
Drug Implants
Humans
Liposomes
Nanoparticles
Ophthalmology
Retinal Diseases - drug therapy
title Routes for Drug Delivery: Sustained-Release Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Routes%20for%20Drug%20Delivery:%20Sustained-Release%20Devices&rft.btitle=Developments%20in%20ophthalmology&rft.au=Yun,%20Samuel&rft.date=2016-01-01&rft.volume=55&rft.spage=84&rft.epage=92&rft.pages=84-92&rft.issn=0250-3751&rft.eissn=1662-2790&rft.isbn=9783318055641&rft.isbn_list=3318055646&rft_id=info:doi/10.1159/000434692&rft_dat=%3Cproquest_pubme%3EEBC4395885_84_101%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&rft.eisbn=3318055654&rft.eisbn_list=9783318055658&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4395885_84_101&rft_id=info:pmid/26501913&rfr_iscdi=true