Routes for Drug Delivery: Sustained-Release Devices
Several different technologies exist for sustained-release drug delivery devices, including: (1) nonbiodegradable implants; (2) biodegradable implants; (3) micro- and nanoparticles; (4) liposomes, and (5) encapsulated cell technology (ECT). Currently, the only sustained-release devices approved by t...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | |
container_start_page | 84 |
container_title | |
container_volume | 55 |
creator | Yun, Samuel Huang, John J. |
description | Several different technologies exist for sustained-release drug delivery devices, including: (1) nonbiodegradable implants; (2) biodegradable implants; (3) micro- and nanoparticles; (4) liposomes, and (5) encapsulated cell technology (ECT). Currently, the only sustained-release devices approved by the Food and Drug Administration are the ganciclovir implant for the treatment of cytomegalovirus retinitis, the fluocinolone acetonide implant for the treatment of noninfectious posterior uveitis and the dexamethasone implant for the treatment of diabetic macular edema or noninfectious posterior uveitis. The first two implants are nonbiodegradable and require surgical placement, whereas the dexamethasone implant is biodegradable, and can be shaped and injected using a small-gauge needle or applicator into the vitreous. ECT, currently in a phase II clinical trial, utilizes modified retinal pigment epithelium cells to produce protein drug molecules in the vitreous. The microparticle, nanoparticle and liposome technology currently in development may offer the most flexibility for prolonged drug release and combination therapy for retinal diseases. |
doi_str_mv | 10.1159/000434692 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_4395885_84_101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4395885_84_101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-49949989e22970e1a057e85bec606abe478f802325ae53110bffad4fa74b87203</originalsourceid><addsrcrecordid>eNpdkUtLw1AQha_vVu3CPyB15yY6c9_XndQnCELVdbhJJzU2beq9SaH_3kjrRhiYxfnOYQ7D2BnCFaJy1wAghdSO77BjIdCCUlrJXdZHrXnCjYM9NnDG_mkS91kfuIJEGIWHrO8kGgBldI8NYvzq8lAZLq05Yj2uFaBD0WdiXLcNxWFRh-FdaKfDO6rKFYX1zfCtjY0vFzRJxlSRj9RpqzKneMoOCl9FGmz3Cft4uH8fPSUvr4_Po9uXJBccm0Q61411xLkzQOi7Y8iqjHIN2mckjS0scMGVJyUQISsKP5GFNzKzhoM4YZeb3GWov1uKTTovY05V5RdUtzFFwy1X2hnRoedbtM3mNEmXoZz7sE7_inaA-JdFWV3Pclo0wVf5p182FGIqhVPWqtTKFAE718XGNfNhSmHjiZFCSb_s73vEDzOTdfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC4395885_84_101</pqid></control><display><type>book_chapter</type><title>Routes for Drug Delivery: Sustained-Release Devices</title><source>Karger eBooks Collection</source><source>MEDLINE</source><creator>Yun, Samuel ; Huang, John J.</creator><contributor>Rodrigues, E. B ; Do, D. V ; Mieler, W. F ; Farah, M. E ; Nguyen, Q. D</contributor><creatorcontrib>Yun, Samuel ; Huang, John J. ; Rodrigues, E. B ; Do, D. V ; Mieler, W. F ; Farah, M. E ; Nguyen, Q. D</creatorcontrib><description>Several different technologies exist for sustained-release drug delivery devices, including: (1) nonbiodegradable implants; (2) biodegradable implants; (3) micro- and nanoparticles; (4) liposomes, and (5) encapsulated cell technology (ECT). Currently, the only sustained-release devices approved by the Food and Drug Administration are the ganciclovir implant for the treatment of cytomegalovirus retinitis, the fluocinolone acetonide implant for the treatment of noninfectious posterior uveitis and the dexamethasone implant for the treatment of diabetic macular edema or noninfectious posterior uveitis. The first two implants are nonbiodegradable and require surgical placement, whereas the dexamethasone implant is biodegradable, and can be shaped and injected using a small-gauge needle or applicator into the vitreous. ECT, currently in a phase II clinical trial, utilizes modified retinal pigment epithelium cells to produce protein drug molecules in the vitreous. The microparticle, nanoparticle and liposome technology currently in development may offer the most flexibility for prolonged drug release and combination therapy for retinal diseases.</description><identifier>ISSN: 0250-3751</identifier><identifier>ISBN: 9783318055641</identifier><identifier>ISBN: 3318055646</identifier><identifier>EISSN: 1662-2790</identifier><identifier>EISBN: 3318055654</identifier><identifier>EISBN: 9783318055658</identifier><identifier>DOI: 10.1159/000434692</identifier><identifier>OCLC: 941700576</identifier><identifier>PMID: 26501913</identifier><identifier>LCCallNum: RE551 -- .R48 2016eb</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Chapter ; Delayed-Action Preparations ; Drug Administration Routes ; Drug Delivery Systems ; Drug Implants ; Humans ; Liposomes ; Nanoparticles ; Ophthalmology ; Retinal Diseases - drug therapy</subject><ispartof>Developments in ophthalmology, 2016, Vol.55, p.84-92</ispartof><rights>2016 S. Karger AG, Basel</rights><rights>2016 S. Karger AG, Basel.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-49949989e22970e1a057e85bec606abe478f802325ae53110bffad4fa74b87203</citedby><relation>Retinal Pharmacotherapeutics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/4395885-l.jpg</thumbnail><link.rule.ids>775,776,780,789,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26501913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rodrigues, E. B</contributor><contributor>Do, D. V</contributor><contributor>Mieler, W. F</contributor><contributor>Farah, M. E</contributor><contributor>Nguyen, Q. D</contributor><creatorcontrib>Yun, Samuel</creatorcontrib><creatorcontrib>Huang, John J.</creatorcontrib><title>Routes for Drug Delivery: Sustained-Release Devices</title><title>Developments in ophthalmology</title><addtitle>Dev Ophthalmol</addtitle><description>Several different technologies exist for sustained-release drug delivery devices, including: (1) nonbiodegradable implants; (2) biodegradable implants; (3) micro- and nanoparticles; (4) liposomes, and (5) encapsulated cell technology (ECT). Currently, the only sustained-release devices approved by the Food and Drug Administration are the ganciclovir implant for the treatment of cytomegalovirus retinitis, the fluocinolone acetonide implant for the treatment of noninfectious posterior uveitis and the dexamethasone implant for the treatment of diabetic macular edema or noninfectious posterior uveitis. The first two implants are nonbiodegradable and require surgical placement, whereas the dexamethasone implant is biodegradable, and can be shaped and injected using a small-gauge needle or applicator into the vitreous. ECT, currently in a phase II clinical trial, utilizes modified retinal pigment epithelium cells to produce protein drug molecules in the vitreous. The microparticle, nanoparticle and liposome technology currently in development may offer the most flexibility for prolonged drug release and combination therapy for retinal diseases.</description><subject>Chapter</subject><subject>Delayed-Action Preparations</subject><subject>Drug Administration Routes</subject><subject>Drug Delivery Systems</subject><subject>Drug Implants</subject><subject>Humans</subject><subject>Liposomes</subject><subject>Nanoparticles</subject><subject>Ophthalmology</subject><subject>Retinal Diseases - drug therapy</subject><issn>0250-3751</issn><issn>1662-2790</issn><isbn>9783318055641</isbn><isbn>3318055646</isbn><isbn>3318055654</isbn><isbn>9783318055658</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2016</creationdate><recordtype>book_chapter</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLw1AQha_vVu3CPyB15yY6c9_XndQnCELVdbhJJzU2beq9SaH_3kjrRhiYxfnOYQ7D2BnCFaJy1wAghdSO77BjIdCCUlrJXdZHrXnCjYM9NnDG_mkS91kfuIJEGIWHrO8kGgBldI8NYvzq8lAZLq05Yj2uFaBD0WdiXLcNxWFRh-FdaKfDO6rKFYX1zfCtjY0vFzRJxlSRj9RpqzKneMoOCl9FGmz3Cft4uH8fPSUvr4_Po9uXJBccm0Q61411xLkzQOi7Y8iqjHIN2mckjS0scMGVJyUQISsKP5GFNzKzhoM4YZeb3GWov1uKTTovY05V5RdUtzFFwy1X2hnRoedbtM3mNEmXoZz7sE7_inaA-JdFWV3Pclo0wVf5p182FGIqhVPWqtTKFAE718XGNfNhSmHjiZFCSb_s73vEDzOTdfY</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Yun, Samuel</creator><creator>Huang, John J.</creator><general>S. Karger AG</general><scope>FFUUA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160101</creationdate><title>Routes for Drug Delivery: Sustained-Release Devices</title><author>Yun, Samuel ; Huang, John J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-49949989e22970e1a057e85bec606abe478f802325ae53110bffad4fa74b87203</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chapter</topic><topic>Delayed-Action Preparations</topic><topic>Drug Administration Routes</topic><topic>Drug Delivery Systems</topic><topic>Drug Implants</topic><topic>Humans</topic><topic>Liposomes</topic><topic>Nanoparticles</topic><topic>Ophthalmology</topic><topic>Retinal Diseases - drug therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Samuel</creatorcontrib><creatorcontrib>Huang, John J.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Samuel</au><au>Huang, John J.</au><au>Rodrigues, E. B</au><au>Do, D. V</au><au>Mieler, W. F</au><au>Farah, M. E</au><au>Nguyen, Q. D</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Routes for Drug Delivery: Sustained-Release Devices</atitle><btitle>Developments in ophthalmology</btitle><addtitle>Dev Ophthalmol</addtitle><seriestitle>Retinal Pharmacotherapeutics</seriestitle><date>2016-01-01</date><risdate>2016</risdate><volume>55</volume><spage>84</spage><epage>92</epage><pages>84-92</pages><issn>0250-3751</issn><eissn>1662-2790</eissn><isbn>9783318055641</isbn><isbn>3318055646</isbn><eisbn>3318055654</eisbn><eisbn>9783318055658</eisbn><abstract>Several different technologies exist for sustained-release drug delivery devices, including: (1) nonbiodegradable implants; (2) biodegradable implants; (3) micro- and nanoparticles; (4) liposomes, and (5) encapsulated cell technology (ECT). Currently, the only sustained-release devices approved by the Food and Drug Administration are the ganciclovir implant for the treatment of cytomegalovirus retinitis, the fluocinolone acetonide implant for the treatment of noninfectious posterior uveitis and the dexamethasone implant for the treatment of diabetic macular edema or noninfectious posterior uveitis. The first two implants are nonbiodegradable and require surgical placement, whereas the dexamethasone implant is biodegradable, and can be shaped and injected using a small-gauge needle or applicator into the vitreous. ECT, currently in a phase II clinical trial, utilizes modified retinal pigment epithelium cells to produce protein drug molecules in the vitreous. The microparticle, nanoparticle and liposome technology currently in development may offer the most flexibility for prolonged drug release and combination therapy for retinal diseases.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>26501913</pmid><doi>10.1159/000434692</doi><oclcid>941700576</oclcid><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0250-3751 |
ispartof | Developments in ophthalmology, 2016, Vol.55, p.84-92 |
issn | 0250-3751 1662-2790 |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_4395885_84_101 |
source | Karger eBooks Collection; MEDLINE |
subjects | Chapter Delayed-Action Preparations Drug Administration Routes Drug Delivery Systems Drug Implants Humans Liposomes Nanoparticles Ophthalmology Retinal Diseases - drug therapy |
title | Routes for Drug Delivery: Sustained-Release Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Routes%20for%20Drug%20Delivery:%20Sustained-Release%20Devices&rft.btitle=Developments%20in%20ophthalmology&rft.au=Yun,%20Samuel&rft.date=2016-01-01&rft.volume=55&rft.spage=84&rft.epage=92&rft.pages=84-92&rft.issn=0250-3751&rft.eissn=1662-2790&rft.isbn=9783318055641&rft.isbn_list=3318055646&rft_id=info:doi/10.1159/000434692&rft_dat=%3Cproquest_pubme%3EEBC4395885_84_101%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&rft.eisbn=3318055654&rft.eisbn_list=9783318055658&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4395885_84_101&rft_id=info:pmid/26501913&rfr_iscdi=true |