Properties of Some Extremal Problems of Permutation Cycles

Given a set of n real numbers A = {ai|i = 1, …, n} and a permutation α of the integers from 1 to n, define the function f(α, A) = 1/2 Σin=1(aαi - aαi+1)2. We determine the permutations α* and α** which maximize and minimize this function. Next, given the integer k, we find the subsets Bk* and Bk** w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hung, Ming S., Waren, Allan D., Rom, Walter O.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue
container_start_page 199
container_title
container_volume 59
creator Hung, Ming S.
Waren, Allan D.
Rom, Walter O.
description Given a set of n real numbers A = {ai|i = 1, …, n} and a permutation α of the integers from 1 to n, define the function f(α, A) = 1/2 Σin=1(aαi - aαi+1)2. We determine the permutations α* and α** which maximize and minimize this function. Next, given the integer k, we find the subsets Bk* and Bk** which maximize and minimize f(α*, Bk*) and f(α**, Bk**) respectively, over all subsets Bk of A with cardinality k. Then we determine the values for k, 2⩽k⩽n which maximize and minimize the values of f(α*, Bk*) and f(α**, Bk**) respectively. These results are then applied to a special assignment problem to determine if the diameter of two property of the assignment can be achieved by an adjacent extreme point method, i.e. can the problem be solved in two steps. It is shown that in general this is not possible.
doi_str_mv 10.1016/S0304-0208(08)73467-4
format Book Chapter
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_405401_20_208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304020808734674</els_id><sourcerecordid>EBC405401_20_208</sourcerecordid><originalsourceid>FETCH-LOGICAL-e169t-52cf60f788927ac4d0296d1ffebd45a72c183a2394f70b7c65e13c70ef2511cd3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhSM-sNb-BGGWuhi9eUyScSNS6gMKFqrrkMnc4OhMUzOp6L93WsXLgbs4nMPhI-SMwiUFKq-WwEHkwECfg75QXEiViz0yKZUG0KAVVaD2yQkIIbRkVNIDMvrPHJGRUJIxpjgck0nfv8FwXPChZ0SuFzGsMaYG-yz4bBk6zGZfKWJn22zwqha7nbPA2G2STU1YZdNv12J_Sg69bXuc_P0xebmbPU8f8vnT_eP0dp4jlWXKC-a8BK-0LpmyTtTASllT77GqRWEVc1Rzy3gpvIJKOVkg5U4BelZQ6mo-Juy3dx3Dxwb7ZLAK4d3hKkXbule7Thh7I6AQQA2DQXoI3fyGcFj22WA0vWtw5bBuIrpk6tAYCmbL1-z4mi0rM2jH1wj-A3xZaQU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC405401_20_208</pqid></control><display><type>book_chapter</type><title>Properties of Some Extremal Problems of Permutation Cycles</title><source>Elsevier ScienceDirect Journals Complete</source><source>ScienceDirect eBooks</source><creator>Hung, Ming S. ; Waren, Allan D. ; Rom, Walter O.</creator><contributor>Hansen, P</contributor><creatorcontrib>Hung, Ming S. ; Waren, Allan D. ; Rom, Walter O. ; Hansen, P</creatorcontrib><description>Given a set of n real numbers A = {ai|i = 1, …, n} and a permutation α of the integers from 1 to n, define the function f(α, A) = 1/2 Σin=1(aαi - aαi+1)2. We determine the permutations α* and α** which maximize and minimize this function. Next, given the integer k, we find the subsets Bk* and Bk** which maximize and minimize f(α*, Bk*) and f(α**, Bk**) respectively, over all subsets Bk of A with cardinality k. Then we determine the values for k, 2⩽k⩽n which maximize and minimize the values of f(α*, Bk*) and f(α**, Bk**) respectively. These results are then applied to a special assignment problem to determine if the diameter of two property of the assignment can be achieved by an adjacent extreme point method, i.e. can the problem be solved in two steps. It is shown that in general this is not possible.</description><identifier>ISSN: 0304-0208</identifier><identifier>ISBN: 0444862161</identifier><identifier>ISBN: 9780444862167</identifier><identifier>EISBN: 9780080871707</identifier><identifier>EISBN: 0080871704</identifier><identifier>DOI: 10.1016/S0304-0208(08)73467-4</identifier><identifier>OCLC: 476222730</identifier><identifier>LCCallNum: T57.74.S78 1981</identifier><language>eng</language><publisher>The Netherlands: Elsevier Science &amp; Technology</publisher><subject>Combinatorics &amp; graph theory ; Optimization</subject><ispartof>North-Holland Mathematics Studies, 1981, Vol.59, p.199-214</ispartof><rights>1981 North-Holland Publishing Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/405401-l.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304020808734674$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>779,780,784,793,3459,3550,11288,27925,45810,45995</link.rule.ids></links><search><contributor>Hansen, P</contributor><creatorcontrib>Hung, Ming S.</creatorcontrib><creatorcontrib>Waren, Allan D.</creatorcontrib><creatorcontrib>Rom, Walter O.</creatorcontrib><title>Properties of Some Extremal Problems of Permutation Cycles</title><title>North-Holland Mathematics Studies</title><description>Given a set of n real numbers A = {ai|i = 1, …, n} and a permutation α of the integers from 1 to n, define the function f(α, A) = 1/2 Σin=1(aαi - aαi+1)2. We determine the permutations α* and α** which maximize and minimize this function. Next, given the integer k, we find the subsets Bk* and Bk** which maximize and minimize f(α*, Bk*) and f(α**, Bk**) respectively, over all subsets Bk of A with cardinality k. Then we determine the values for k, 2⩽k⩽n which maximize and minimize the values of f(α*, Bk*) and f(α**, Bk**) respectively. These results are then applied to a special assignment problem to determine if the diameter of two property of the assignment can be achieved by an adjacent extreme point method, i.e. can the problem be solved in two steps. It is shown that in general this is not possible.</description><subject>Combinatorics &amp; graph theory</subject><subject>Optimization</subject><issn>0304-0208</issn><isbn>0444862161</isbn><isbn>9780444862167</isbn><isbn>9780080871707</isbn><isbn>0080871704</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1981</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9kEtLAzEUhSM-sNb-BGGWuhi9eUyScSNS6gMKFqrrkMnc4OhMUzOp6L93WsXLgbs4nMPhI-SMwiUFKq-WwEHkwECfg75QXEiViz0yKZUG0KAVVaD2yQkIIbRkVNIDMvrPHJGRUJIxpjgck0nfv8FwXPChZ0SuFzGsMaYG-yz4bBk6zGZfKWJn22zwqha7nbPA2G2STU1YZdNv12J_Sg69bXuc_P0xebmbPU8f8vnT_eP0dp4jlWXKC-a8BK-0LpmyTtTASllT77GqRWEVc1Rzy3gpvIJKOVkg5U4BelZQ6mo-Juy3dx3Dxwb7ZLAK4d3hKkXbule7Thh7I6AQQA2DQXoI3fyGcFj22WA0vWtw5bBuIrpk6tAYCmbL1-z4mi0rM2jH1wj-A3xZaQU</recordid><startdate>1981</startdate><enddate>1981</enddate><creator>Hung, Ming S.</creator><creator>Waren, Allan D.</creator><creator>Rom, Walter O.</creator><general>Elsevier Science &amp; Technology</general><scope>FFUUA</scope></search><sort><creationdate>1981</creationdate><title>Properties of Some Extremal Problems of Permutation Cycles</title><author>Hung, Ming S. ; Waren, Allan D. ; Rom, Walter O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e169t-52cf60f788927ac4d0296d1ffebd45a72c183a2394f70b7c65e13c70ef2511cd3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Combinatorics &amp; graph theory</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Ming S.</creatorcontrib><creatorcontrib>Waren, Allan D.</creatorcontrib><creatorcontrib>Rom, Walter O.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Ming S.</au><au>Waren, Allan D.</au><au>Rom, Walter O.</au><au>Hansen, P</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Properties of Some Extremal Problems of Permutation Cycles</atitle><btitle>North-Holland Mathematics Studies</btitle><date>1981</date><risdate>1981</risdate><volume>59</volume><spage>199</spage><epage>214</epage><pages>199-214</pages><issn>0304-0208</issn><isbn>0444862161</isbn><isbn>9780444862167</isbn><eisbn>9780080871707</eisbn><eisbn>0080871704</eisbn><abstract>Given a set of n real numbers A = {ai|i = 1, …, n} and a permutation α of the integers from 1 to n, define the function f(α, A) = 1/2 Σin=1(aαi - aαi+1)2. We determine the permutations α* and α** which maximize and minimize this function. Next, given the integer k, we find the subsets Bk* and Bk** which maximize and minimize f(α*, Bk*) and f(α**, Bk**) respectively, over all subsets Bk of A with cardinality k. Then we determine the values for k, 2⩽k⩽n which maximize and minimize the values of f(α*, Bk*) and f(α**, Bk**) respectively. These results are then applied to a special assignment problem to determine if the diameter of two property of the assignment can be achieved by an adjacent extreme point method, i.e. can the problem be solved in two steps. It is shown that in general this is not possible.</abstract><cop>The Netherlands</cop><pub>Elsevier Science &amp; Technology</pub><doi>10.1016/S0304-0208(08)73467-4</doi><oclcid>476222730</oclcid><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-0208
ispartof North-Holland Mathematics Studies, 1981, Vol.59, p.199-214
issn 0304-0208
language eng
recordid cdi_proquest_ebookcentralchapters_405401_20_208
source Elsevier ScienceDirect Journals Complete; ScienceDirect eBooks
subjects Combinatorics & graph theory
Optimization
title Properties of Some Extremal Problems of Permutation Cycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Properties%20of%20Some%20Extremal%20Problems%20of%20Permutation%20Cycles&rft.btitle=North-Holland%20Mathematics%20Studies&rft.au=Hung,%20Ming%20S.&rft.date=1981&rft.volume=59&rft.spage=199&rft.epage=214&rft.pages=199-214&rft.issn=0304-0208&rft.isbn=0444862161&rft.isbn_list=9780444862167&rft_id=info:doi/10.1016/S0304-0208(08)73467-4&rft_dat=%3Cproquest_elsev%3EEBC405401_20_208%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780080871707&rft.eisbn_list=0080871704&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC405401_20_208&rft_id=info:pmid/&rft_els_id=S0304020808734674&rfr_iscdi=true