1-Factorizing Regular Graphs of High Degree-an Improved Bound
We showed eariler that a regular simple graph of even order satisfying d(G) » 6/7|V(G)| was the union of edge-disjoint 1-factors. Here we improve this to regular simple graphs of even order satisfying d(G)≥ 1/2(√7- 1)|V(G)|.
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | |
container_start_page | 103 |
container_title | |
container_volume | 43 |
creator | Chetwynd, A.G. Hilton, A.J.W. |
description | We showed eariler that a regular simple graph of even order satisfying d(G) » 6/7|V(G)| was the union of edge-disjoint 1-factors. Here we improve this to regular simple graphs of even order satisfying d(G)≥ 1/2(√7- 1)|V(G)|. |
doi_str_mv | 10.1016/S0167-5060(08)70570-3 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_404382_17_112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167506008705703</els_id><sourcerecordid>EBC404382_17_112</sourcerecordid><originalsourceid>FETCH-LOGICAL-e169t-e8c427c162d6c2b1059a2a9584a76bc2a90c4f8200ff2d2c7c37fa88fd1f0acd3</originalsourceid><addsrcrecordid>eNo9kMlOwzAQho1YRFt4BKQc4RAYL7GdA0JQ6CJVQmI5W649TgMlKU7aA09P2iIuM_MfvpnRR8gFhWsKVN68dkWlGUi4BH2lIFOQ8gPSB9CgpdI8P-yCEEIrzvLsiPT-gRPSE0oyqhljp6TfNB8AmdYaeuSWpiPr2jqWP2VVJC9YrJc2JuNoV4smqUMyKYtF8ohFRExtlUy_VrHeoE8e6nXlz8hxsMsGz__6gLyPnt6Gk3T2PJ4O72cpUpm3KWonmHJUMi8dm1PIcstsnmlhlZy7bgQngmYAITDPnHJcBat18DSAdZ4PCNvv7Y5_r7FpDc7r-tNh1Ua7dAu7ajE2RoDgmhmqDKWsg-72EHafbUqMpnElVg59GdG1xteloWC2cs1Ortm6MqDNTq7h_BduFGh6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC404382_17_112</pqid></control><display><type>book_chapter</type><title>1-Factorizing Regular Graphs of High Degree-an Improved Bound</title><source>ScienceDirect eBooks</source><source>Elsevier ScienceDirect Journals</source><creator>Chetwynd, A.G. ; Hilton, A.J.W.</creator><contributor>Bollobás, B</contributor><creatorcontrib>Chetwynd, A.G. ; Hilton, A.J.W. ; Bollobás, B</creatorcontrib><description>We showed eariler that a regular simple graph of even order satisfying d(G) » 6/7|V(G)| was the union of edge-disjoint 1-factors. Here we improve this to regular simple graphs of even order satisfying d(G)≥ 1/2(√7- 1)|V(G)|.</description><identifier>ISSN: 0167-5060</identifier><identifier>ISBN: 0444873295</identifier><identifier>ISBN: 9780444873293</identifier><identifier>EISBN: 0080867839</identifier><identifier>EISBN: 9780080867830</identifier><identifier>DOI: 10.1016/S0167-5060(08)70570-3</identifier><identifier>OCLC: 476218222</identifier><identifier>LCCallNum: QA166.C35 1988</identifier><language>eng</language><publisher>The Netherlands: Elsevier Science & Technology</publisher><subject>Combinatorics & graph theory ; Optimization</subject><ispartof>Annals of Discrete Mathematics, 1989, Vol.43, p.103-112</ispartof><rights>1989</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/404382-l.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167506008705703$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>775,776,780,789,3446,3537,11267,27902,45786,65534</link.rule.ids></links><search><contributor>Bollobás, B</contributor><creatorcontrib>Chetwynd, A.G.</creatorcontrib><creatorcontrib>Hilton, A.J.W.</creatorcontrib><title>1-Factorizing Regular Graphs of High Degree-an Improved Bound</title><title>Annals of Discrete Mathematics</title><description>We showed eariler that a regular simple graph of even order satisfying d(G) » 6/7|V(G)| was the union of edge-disjoint 1-factors. Here we improve this to regular simple graphs of even order satisfying d(G)≥ 1/2(√7- 1)|V(G)|.</description><subject>Combinatorics & graph theory</subject><subject>Optimization</subject><issn>0167-5060</issn><isbn>0444873295</isbn><isbn>9780444873293</isbn><isbn>0080867839</isbn><isbn>9780080867830</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1989</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9kMlOwzAQho1YRFt4BKQc4RAYL7GdA0JQ6CJVQmI5W649TgMlKU7aA09P2iIuM_MfvpnRR8gFhWsKVN68dkWlGUi4BH2lIFOQ8gPSB9CgpdI8P-yCEEIrzvLsiPT-gRPSE0oyqhljp6TfNB8AmdYaeuSWpiPr2jqWP2VVJC9YrJc2JuNoV4smqUMyKYtF8ohFRExtlUy_VrHeoE8e6nXlz8hxsMsGz__6gLyPnt6Gk3T2PJ4O72cpUpm3KWonmHJUMi8dm1PIcstsnmlhlZy7bgQngmYAITDPnHJcBat18DSAdZ4PCNvv7Y5_r7FpDc7r-tNh1Ua7dAu7ajE2RoDgmhmqDKWsg-72EHafbUqMpnElVg59GdG1xteloWC2cs1Ortm6MqDNTq7h_BduFGh6</recordid><startdate>1989</startdate><enddate>1989</enddate><creator>Chetwynd, A.G.</creator><creator>Hilton, A.J.W.</creator><general>Elsevier Science & Technology</general><scope>FFUUA</scope></search><sort><creationdate>1989</creationdate><title>1-Factorizing Regular Graphs of High Degree-an Improved Bound</title><author>Chetwynd, A.G. ; Hilton, A.J.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e169t-e8c427c162d6c2b1059a2a9584a76bc2a90c4f8200ff2d2c7c37fa88fd1f0acd3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Combinatorics & graph theory</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chetwynd, A.G.</creatorcontrib><creatorcontrib>Hilton, A.J.W.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chetwynd, A.G.</au><au>Hilton, A.J.W.</au><au>Bollobás, B</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>1-Factorizing Regular Graphs of High Degree-an Improved Bound</atitle><btitle>Annals of Discrete Mathematics</btitle><date>1989</date><risdate>1989</risdate><volume>43</volume><spage>103</spage><epage>112</epage><pages>103-112</pages><issn>0167-5060</issn><isbn>0444873295</isbn><isbn>9780444873293</isbn><eisbn>0080867839</eisbn><eisbn>9780080867830</eisbn><abstract>We showed eariler that a regular simple graph of even order satisfying d(G) » 6/7|V(G)| was the union of edge-disjoint 1-factors. Here we improve this to regular simple graphs of even order satisfying d(G)≥ 1/2(√7- 1)|V(G)|.</abstract><cop>The Netherlands</cop><pub>Elsevier Science & Technology</pub><doi>10.1016/S0167-5060(08)70570-3</doi><oclcid>476218222</oclcid><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-5060 |
ispartof | Annals of Discrete Mathematics, 1989, Vol.43, p.103-112 |
issn | 0167-5060 |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_404382_17_112 |
source | ScienceDirect eBooks; Elsevier ScienceDirect Journals |
subjects | Combinatorics & graph theory Optimization |
title | 1-Factorizing Regular Graphs of High Degree-an Improved Bound |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=1-Factorizing%20Regular%20Graphs%20of%20High%20Degree-an%20Improved%20Bound&rft.btitle=Annals%20of%20Discrete%20Mathematics&rft.au=Chetwynd,%20A.G.&rft.date=1989&rft.volume=43&rft.spage=103&rft.epage=112&rft.pages=103-112&rft.issn=0167-5060&rft.isbn=0444873295&rft.isbn_list=9780444873293&rft_id=info:doi/10.1016/S0167-5060(08)70570-3&rft_dat=%3Cproquest_elsev%3EEBC404382_17_112%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&rft.eisbn=0080867839&rft.eisbn_list=9780080867830&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC404382_17_112&rft_id=info:pmid/&rft_els_id=S0167506008705703&rfr_iscdi=true |