P4-Comparability Graphs
In 1981, Chvátal defined the class of perfectly orderable graphs. This class of perfect graphs contains the comparability graphs. In this paper, we introduce a new class of perfectly orderable graphs, the P4-comparability graphs. This class generalizes comparability graphs in a natural way. We also...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200 |
---|---|
container_issue | |
container_start_page | 173 |
container_title | |
container_volume | 39 |
creator | Hoàng, C.T. Reed, B.A. |
description | In 1981, Chvátal defined the class of perfectly orderable graphs. This class of perfect graphs contains the comparability graphs. In this paper, we introduce a new class of perfectly orderable graphs, the P4-comparability graphs. This class generalizes comparability graphs in a natural way. We also prove a decomposition theorem which leads to a structural characterization of P4-comparability graphs. Using this characterization, we develop a polynomial-time recognition algorithm and polynomial-time algorithms for the clique and colouring problems for P4-comparability graphs. |
doi_str_mv | 10.1016/S0167-5060(08)70309-1 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_404379_22_180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167506008703091</els_id><sourcerecordid>EBC404379_22_180</sourcerecordid><originalsourceid>FETCH-LOGICAL-e169t-f36e6307f21b627e0b938d10407f7815bba9bbbef3e160073d935ee26cde6b823</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhlf8wLT27EnwqIfo7Ed2Z09SilahoKCel91kQqO1ibtR8N-btuJlBoZ5Xl4exs44XHHg-vp5GCYvQMMF4KUBCTbne2wEgIDaGAv7bGINglLKQCGlOmDZP3PEMmW04ChAHbNRSm8ABSJCxk6fVD5rPzoffWhWTf9zPo--W6YTdlj7VaLJ3x6z17vbl9l9vnicP8ymi5y4tn1eS01agqkFD1oYgmAlVhzUcDLIixC8DSFQLYd_ACMrKwsiocuKdEAhx0zscrvYfn5R6h2Ftn0vad1HvyqXvuspJqdASWOdEI4jDNDNDqKh2XdD0aWyoXVJVROp7F3VNo6D25hzW3NuY8EBuq05x-UveaZbIQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC404379_22_180</pqid></control><display><type>book_chapter</type><title>P4-Comparability Graphs</title><source>ScienceDirect eBooks</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hoàng, C.T. ; Reed, B.A.</creator><contributor>de Werra, D ; Hertz, A</contributor><creatorcontrib>Hoàng, C.T. ; Reed, B.A. ; de Werra, D ; Hertz, A</creatorcontrib><description>In 1981, Chvátal defined the class of perfectly orderable graphs. This class of perfect graphs contains the comparability graphs. In this paper, we introduce a new class of perfectly orderable graphs, the P4-comparability graphs. This class generalizes comparability graphs in a natural way. We also prove a decomposition theorem which leads to a structural characterization of P4-comparability graphs. Using this characterization, we develop a polynomial-time recognition algorithm and polynomial-time algorithms for the clique and colouring problems for P4-comparability graphs.</description><identifier>ISSN: 0167-5060</identifier><identifier>ISBN: 9780444705334</identifier><identifier>ISBN: 0444705333</identifier><identifier>EISBN: 0080867790</identifier><identifier>EISBN: 9780080867793</identifier><identifier>DOI: 10.1016/S0167-5060(08)70309-1</identifier><identifier>OCLC: 476218204</identifier><identifier>LCCallNum: QA612.18.G73 1989</identifier><language>eng</language><publisher>The Netherlands: Elsevier Science & Technology</publisher><subject>Combinatorics & graph theory ; Optimization</subject><ispartof>Annals of Discrete Mathematics, 1989, Vol.39, p.173-200</ispartof><rights>1989</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/404379-l.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167506008703091$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>779,780,784,793,3457,3548,11287,27924,45809,45994</link.rule.ids></links><search><contributor>de Werra, D</contributor><contributor>Hertz, A</contributor><creatorcontrib>Hoàng, C.T.</creatorcontrib><creatorcontrib>Reed, B.A.</creatorcontrib><title>P4-Comparability Graphs</title><title>Annals of Discrete Mathematics</title><description>In 1981, Chvátal defined the class of perfectly orderable graphs. This class of perfect graphs contains the comparability graphs. In this paper, we introduce a new class of perfectly orderable graphs, the P4-comparability graphs. This class generalizes comparability graphs in a natural way. We also prove a decomposition theorem which leads to a structural characterization of P4-comparability graphs. Using this characterization, we develop a polynomial-time recognition algorithm and polynomial-time algorithms for the clique and colouring problems for P4-comparability graphs.</description><subject>Combinatorics & graph theory</subject><subject>Optimization</subject><issn>0167-5060</issn><isbn>9780444705334</isbn><isbn>0444705333</isbn><isbn>0080867790</isbn><isbn>9780080867793</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1989</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9kE1Lw0AQhlf8wLT27EnwqIfo7Ed2Z09SilahoKCel91kQqO1ibtR8N-btuJlBoZ5Xl4exs44XHHg-vp5GCYvQMMF4KUBCTbne2wEgIDaGAv7bGINglLKQCGlOmDZP3PEMmW04ChAHbNRSm8ABSJCxk6fVD5rPzoffWhWTf9zPo--W6YTdlj7VaLJ3x6z17vbl9l9vnicP8ymi5y4tn1eS01agqkFD1oYgmAlVhzUcDLIixC8DSFQLYd_ACMrKwsiocuKdEAhx0zscrvYfn5R6h2Ftn0vad1HvyqXvuspJqdASWOdEI4jDNDNDqKh2XdD0aWyoXVJVROp7F3VNo6D25hzW3NuY8EBuq05x-UveaZbIQ</recordid><startdate>1989</startdate><enddate>1989</enddate><creator>Hoàng, C.T.</creator><creator>Reed, B.A.</creator><general>Elsevier Science & Technology</general><scope>FFUUA</scope></search><sort><creationdate>1989</creationdate><title>P4-Comparability Graphs</title><author>Hoàng, C.T. ; Reed, B.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e169t-f36e6307f21b627e0b938d10407f7815bba9bbbef3e160073d935ee26cde6b823</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Combinatorics & graph theory</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoàng, C.T.</creatorcontrib><creatorcontrib>Reed, B.A.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoàng, C.T.</au><au>Reed, B.A.</au><au>de Werra, D</au><au>Hertz, A</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>P4-Comparability Graphs</atitle><btitle>Annals of Discrete Mathematics</btitle><date>1989</date><risdate>1989</risdate><volume>39</volume><spage>173</spage><epage>200</epage><pages>173-200</pages><issn>0167-5060</issn><isbn>9780444705334</isbn><isbn>0444705333</isbn><eisbn>0080867790</eisbn><eisbn>9780080867793</eisbn><abstract>In 1981, Chvátal defined the class of perfectly orderable graphs. This class of perfect graphs contains the comparability graphs. In this paper, we introduce a new class of perfectly orderable graphs, the P4-comparability graphs. This class generalizes comparability graphs in a natural way. We also prove a decomposition theorem which leads to a structural characterization of P4-comparability graphs. Using this characterization, we develop a polynomial-time recognition algorithm and polynomial-time algorithms for the clique and colouring problems for P4-comparability graphs.</abstract><cop>The Netherlands</cop><pub>Elsevier Science & Technology</pub><doi>10.1016/S0167-5060(08)70309-1</doi><oclcid>476218204</oclcid><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-5060 |
ispartof | Annals of Discrete Mathematics, 1989, Vol.39, p.173-200 |
issn | 0167-5060 |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_404379_22_180 |
source | ScienceDirect eBooks; ScienceDirect Journals (5 years ago - present) |
subjects | Combinatorics & graph theory Optimization |
title | P4-Comparability Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A04%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=P4-Comparability%20Graphs&rft.btitle=Annals%20of%20Discrete%20Mathematics&rft.au=Ho%C3%A0ng,%20C.T.&rft.date=1989&rft.volume=39&rft.spage=173&rft.epage=200&rft.pages=173-200&rft.issn=0167-5060&rft.isbn=9780444705334&rft.isbn_list=0444705333&rft_id=info:doi/10.1016/S0167-5060(08)70309-1&rft_dat=%3Cproquest_elsev%3EEBC404379_22_180%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&rft.eisbn=0080867790&rft.eisbn_list=9780080867793&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC404379_22_180&rft_id=info:pmid/&rft_els_id=S0167506008703091&rfr_iscdi=true |