P4-Comparability Graphs

In 1981, Chvátal defined the class of perfectly orderable graphs. This class of perfect graphs contains the comparability graphs. In this paper, we introduce a new class of perfectly orderable graphs, the P4-comparability graphs. This class generalizes comparability graphs in a natural way. We also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hoàng, C.T., Reed, B.A.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue
container_start_page 173
container_title
container_volume 39
creator Hoàng, C.T.
Reed, B.A.
description In 1981, Chvátal defined the class of perfectly orderable graphs. This class of perfect graphs contains the comparability graphs. In this paper, we introduce a new class of perfectly orderable graphs, the P4-comparability graphs. This class generalizes comparability graphs in a natural way. We also prove a decomposition theorem which leads to a structural characterization of P4-comparability graphs. Using this characterization, we develop a polynomial-time recognition algorithm and polynomial-time algorithms for the clique and colouring problems for P4-comparability graphs.
doi_str_mv 10.1016/S0167-5060(08)70309-1
format Book Chapter
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_404379_22_180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167506008703091</els_id><sourcerecordid>EBC404379_22_180</sourcerecordid><originalsourceid>FETCH-LOGICAL-e169t-f36e6307f21b627e0b938d10407f7815bba9bbbef3e160073d935ee26cde6b823</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhlf8wLT27EnwqIfo7Ed2Z09SilahoKCel91kQqO1ibtR8N-btuJlBoZ5Xl4exs44XHHg-vp5GCYvQMMF4KUBCTbne2wEgIDaGAv7bGINglLKQCGlOmDZP3PEMmW04ChAHbNRSm8ABSJCxk6fVD5rPzoffWhWTf9zPo--W6YTdlj7VaLJ3x6z17vbl9l9vnicP8ymi5y4tn1eS01agqkFD1oYgmAlVhzUcDLIixC8DSFQLYd_ACMrKwsiocuKdEAhx0zscrvYfn5R6h2Ftn0vad1HvyqXvuspJqdASWOdEI4jDNDNDqKh2XdD0aWyoXVJVROp7F3VNo6D25hzW3NuY8EBuq05x-UveaZbIQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC404379_22_180</pqid></control><display><type>book_chapter</type><title>P4-Comparability Graphs</title><source>ScienceDirect eBooks</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hoàng, C.T. ; Reed, B.A.</creator><contributor>de Werra, D ; Hertz, A</contributor><creatorcontrib>Hoàng, C.T. ; Reed, B.A. ; de Werra, D ; Hertz, A</creatorcontrib><description>In 1981, Chvátal defined the class of perfectly orderable graphs. This class of perfect graphs contains the comparability graphs. In this paper, we introduce a new class of perfectly orderable graphs, the P4-comparability graphs. This class generalizes comparability graphs in a natural way. We also prove a decomposition theorem which leads to a structural characterization of P4-comparability graphs. Using this characterization, we develop a polynomial-time recognition algorithm and polynomial-time algorithms for the clique and colouring problems for P4-comparability graphs.</description><identifier>ISSN: 0167-5060</identifier><identifier>ISBN: 9780444705334</identifier><identifier>ISBN: 0444705333</identifier><identifier>EISBN: 0080867790</identifier><identifier>EISBN: 9780080867793</identifier><identifier>DOI: 10.1016/S0167-5060(08)70309-1</identifier><identifier>OCLC: 476218204</identifier><identifier>LCCallNum: QA612.18.G73 1989</identifier><language>eng</language><publisher>The Netherlands: Elsevier Science &amp; Technology</publisher><subject>Combinatorics &amp; graph theory ; Optimization</subject><ispartof>Annals of Discrete Mathematics, 1989, Vol.39, p.173-200</ispartof><rights>1989</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/404379-l.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167506008703091$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>779,780,784,793,3457,3548,11287,27924,45809,45994</link.rule.ids></links><search><contributor>de Werra, D</contributor><contributor>Hertz, A</contributor><creatorcontrib>Hoàng, C.T.</creatorcontrib><creatorcontrib>Reed, B.A.</creatorcontrib><title>P4-Comparability Graphs</title><title>Annals of Discrete Mathematics</title><description>In 1981, Chvátal defined the class of perfectly orderable graphs. This class of perfect graphs contains the comparability graphs. In this paper, we introduce a new class of perfectly orderable graphs, the P4-comparability graphs. This class generalizes comparability graphs in a natural way. We also prove a decomposition theorem which leads to a structural characterization of P4-comparability graphs. Using this characterization, we develop a polynomial-time recognition algorithm and polynomial-time algorithms for the clique and colouring problems for P4-comparability graphs.</description><subject>Combinatorics &amp; graph theory</subject><subject>Optimization</subject><issn>0167-5060</issn><isbn>9780444705334</isbn><isbn>0444705333</isbn><isbn>0080867790</isbn><isbn>9780080867793</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1989</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9kE1Lw0AQhlf8wLT27EnwqIfo7Ed2Z09SilahoKCel91kQqO1ibtR8N-btuJlBoZ5Xl4exs44XHHg-vp5GCYvQMMF4KUBCTbne2wEgIDaGAv7bGINglLKQCGlOmDZP3PEMmW04ChAHbNRSm8ABSJCxk6fVD5rPzoffWhWTf9zPo--W6YTdlj7VaLJ3x6z17vbl9l9vnicP8ymi5y4tn1eS01agqkFD1oYgmAlVhzUcDLIixC8DSFQLYd_ACMrKwsiocuKdEAhx0zscrvYfn5R6h2Ftn0vad1HvyqXvuspJqdASWOdEI4jDNDNDqKh2XdD0aWyoXVJVROp7F3VNo6D25hzW3NuY8EBuq05x-UveaZbIQ</recordid><startdate>1989</startdate><enddate>1989</enddate><creator>Hoàng, C.T.</creator><creator>Reed, B.A.</creator><general>Elsevier Science &amp; Technology</general><scope>FFUUA</scope></search><sort><creationdate>1989</creationdate><title>P4-Comparability Graphs</title><author>Hoàng, C.T. ; Reed, B.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e169t-f36e6307f21b627e0b938d10407f7815bba9bbbef3e160073d935ee26cde6b823</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Combinatorics &amp; graph theory</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoàng, C.T.</creatorcontrib><creatorcontrib>Reed, B.A.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoàng, C.T.</au><au>Reed, B.A.</au><au>de Werra, D</au><au>Hertz, A</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>P4-Comparability Graphs</atitle><btitle>Annals of Discrete Mathematics</btitle><date>1989</date><risdate>1989</risdate><volume>39</volume><spage>173</spage><epage>200</epage><pages>173-200</pages><issn>0167-5060</issn><isbn>9780444705334</isbn><isbn>0444705333</isbn><eisbn>0080867790</eisbn><eisbn>9780080867793</eisbn><abstract>In 1981, Chvátal defined the class of perfectly orderable graphs. This class of perfect graphs contains the comparability graphs. In this paper, we introduce a new class of perfectly orderable graphs, the P4-comparability graphs. This class generalizes comparability graphs in a natural way. We also prove a decomposition theorem which leads to a structural characterization of P4-comparability graphs. Using this characterization, we develop a polynomial-time recognition algorithm and polynomial-time algorithms for the clique and colouring problems for P4-comparability graphs.</abstract><cop>The Netherlands</cop><pub>Elsevier Science &amp; Technology</pub><doi>10.1016/S0167-5060(08)70309-1</doi><oclcid>476218204</oclcid><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-5060
ispartof Annals of Discrete Mathematics, 1989, Vol.39, p.173-200
issn 0167-5060
language eng
recordid cdi_proquest_ebookcentralchapters_404379_22_180
source ScienceDirect eBooks; ScienceDirect Journals (5 years ago - present)
subjects Combinatorics & graph theory
Optimization
title P4-Comparability Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A04%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=P4-Comparability%20Graphs&rft.btitle=Annals%20of%20Discrete%20Mathematics&rft.au=Ho%C3%A0ng,%20C.T.&rft.date=1989&rft.volume=39&rft.spage=173&rft.epage=200&rft.pages=173-200&rft.issn=0167-5060&rft.isbn=9780444705334&rft.isbn_list=0444705333&rft_id=info:doi/10.1016/S0167-5060(08)70309-1&rft_dat=%3Cproquest_elsev%3EEBC404379_22_180%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&rft.eisbn=0080867790&rft.eisbn_list=9780080867793&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC404379_22_180&rft_id=info:pmid/&rft_els_id=S0167506008703091&rfr_iscdi=true