Clique Coverings of Complements of Paths and Cycles
Let cc(▪) be the minimum number of complete subgraphs necessary to cover the edges of the complement of a graph G. When G is a path or cycle of length n, exact values of cc(▪) are found for small n and bounds are determined implying that cc(▪) is of order log n. Logarithmic bounds on cc(▪) are given...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 267 |
---|---|
container_issue | |
container_start_page | 257 |
container_title | |
container_volume | 115 |
creator | de Caen, D. Gregory, David A. Pullman, N.J. |
description | Let cc(▪) be the minimum number of complete subgraphs necessary to cover the edges of the complement of a graph G. When G is a path or cycle of length n, exact values of cc(▪) are found for small n and bounds are determined implying that cc(▪) is of order log n. Logarithmic bounds on cc(▪) are given for the more general class of those graphs G whose n vertices each have degree 1 or 2. This continues previous work in which cc(▪) was determined for perfect matchings G. |
doi_str_mv | 10.1016/S0304-0208(08)73020-2 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_404144_33_268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304020808730202</els_id><sourcerecordid>EBC404144_33_268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-e2733420188c205778299a706556bfa7a4c1c204f3ba5c003f43ef94097e529e3</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhVe8YK39CUIe9SE6uzPJbp5EgjcoKKjPy3Y7sdE0qdlY8N-7bcVhYOYwnOHjCHEm4VKCzK9eAIFSUGDOwVxojFuq9sQJgAGjlcpxX0wKbYCITBxoDsTo33MkRqRzJbXU-bGYhPABsRBzysxIYNnUX9-clN2a-7p9D0lXRbFcNbzkdtjKZzcsQuLaeVL--IbDqTisXBN48jfH4u3u9rV8SKdP94_lzTT1SskhZaURSYE0xivItDaqKJyGPMvyWeW0Iy_jgSqcucxHpIqQq4Kg0JypgnEs1O7vqu8iYxgsz7ru00eu3jV-4VYD98ESkCSyiFblJpqudyaOZOuaext8za3ned2zH-y8q60EuwnWboO1m5Bs7G2wVuEv73BkwA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC404144_33_268</pqid></control><display><type>book_chapter</type><title>Clique Coverings of Complements of Paths and Cycles</title><source>Elsevier ScienceDirect Journals</source><source>ScienceDirect eBooks</source><creator>de Caen, D. ; Gregory, David A. ; Pullman, N.J.</creator><contributor>Alspach, B. R ; Godsil, C. D</contributor><creatorcontrib>de Caen, D. ; Gregory, David A. ; Pullman, N.J. ; Alspach, B. R ; Godsil, C. D</creatorcontrib><description>Let cc(▪) be the minimum number of complete subgraphs necessary to cover the edges of the complement of a graph G. When G is a path or cycle of length n, exact values of cc(▪) are found for small n and bounds are determined implying that cc(▪) is of order log n. Logarithmic bounds on cc(▪) are given for the more general class of those graphs G whose n vertices each have degree 1 or 2. This continues previous work in which cc(▪) was determined for perfect matchings G.</description><identifier>ISSN: 0304-0208</identifier><identifier>ISBN: 9780444878038</identifier><identifier>ISBN: 0444878033</identifier><identifier>EISBN: 0080872263</identifier><identifier>EISBN: 9780080872261</identifier><identifier>DOI: 10.1016/S0304-0208(08)73020-2</identifier><identifier>OCLC: 476217176</identifier><identifier>LCCallNum: QA166.22.C93 1985</identifier><language>eng</language><publisher>The Netherlands: Elsevier Science & Technology</publisher><subject>Combinatorics & graph theory ; Optimization</subject><ispartof>Cycles in Graphs, 1985, Vol.115, p.257-267</ispartof><rights>1985</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-e2733420188c205778299a706556bfa7a4c1c204f3ba5c003f43ef94097e529e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/404144-l.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-0208(08)73020-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>776,777,781,790,3446,3537,11269,27906,45791,45976</link.rule.ids></links><search><contributor>Alspach, B. R</contributor><contributor>Godsil, C. D</contributor><creatorcontrib>de Caen, D.</creatorcontrib><creatorcontrib>Gregory, David A.</creatorcontrib><creatorcontrib>Pullman, N.J.</creatorcontrib><title>Clique Coverings of Complements of Paths and Cycles</title><title>Cycles in Graphs</title><description>Let cc(▪) be the minimum number of complete subgraphs necessary to cover the edges of the complement of a graph G. When G is a path or cycle of length n, exact values of cc(▪) are found for small n and bounds are determined implying that cc(▪) is of order log n. Logarithmic bounds on cc(▪) are given for the more general class of those graphs G whose n vertices each have degree 1 or 2. This continues previous work in which cc(▪) was determined for perfect matchings G.</description><subject>Combinatorics & graph theory</subject><subject>Optimization</subject><issn>0304-0208</issn><isbn>9780444878038</isbn><isbn>0444878033</isbn><isbn>0080872263</isbn><isbn>9780080872261</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1985</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9kFtLw0AQhVe8YK39CUIe9SE6uzPJbp5EgjcoKKjPy3Y7sdE0qdlY8N-7bcVhYOYwnOHjCHEm4VKCzK9eAIFSUGDOwVxojFuq9sQJgAGjlcpxX0wKbYCITBxoDsTo33MkRqRzJbXU-bGYhPABsRBzysxIYNnUX9-clN2a-7p9D0lXRbFcNbzkdtjKZzcsQuLaeVL--IbDqTisXBN48jfH4u3u9rV8SKdP94_lzTT1SskhZaURSYE0xivItDaqKJyGPMvyWeW0Iy_jgSqcucxHpIqQq4Kg0JypgnEs1O7vqu8iYxgsz7ru00eu3jV-4VYD98ESkCSyiFblJpqudyaOZOuaext8za3ned2zH-y8q60EuwnWboO1m5Bs7G2wVuEv73BkwA</recordid><startdate>1985</startdate><enddate>1985</enddate><creator>de Caen, D.</creator><creator>Gregory, David A.</creator><creator>Pullman, N.J.</creator><general>Elsevier Science & Technology</general><scope>FFUUA</scope></search><sort><creationdate>1985</creationdate><title>Clique Coverings of Complements of Paths and Cycles</title><author>de Caen, D. ; Gregory, David A. ; Pullman, N.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-e2733420188c205778299a706556bfa7a4c1c204f3ba5c003f43ef94097e529e3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Combinatorics & graph theory</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Caen, D.</creatorcontrib><creatorcontrib>Gregory, David A.</creatorcontrib><creatorcontrib>Pullman, N.J.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Caen, D.</au><au>Gregory, David A.</au><au>Pullman, N.J.</au><au>Alspach, B. R</au><au>Godsil, C. D</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Clique Coverings of Complements of Paths and Cycles</atitle><btitle>Cycles in Graphs</btitle><date>1985</date><risdate>1985</risdate><volume>115</volume><spage>257</spage><epage>267</epage><pages>257-267</pages><issn>0304-0208</issn><isbn>9780444878038</isbn><isbn>0444878033</isbn><eisbn>0080872263</eisbn><eisbn>9780080872261</eisbn><abstract>Let cc(▪) be the minimum number of complete subgraphs necessary to cover the edges of the complement of a graph G. When G is a path or cycle of length n, exact values of cc(▪) are found for small n and bounds are determined implying that cc(▪) is of order log n. Logarithmic bounds on cc(▪) are given for the more general class of those graphs G whose n vertices each have degree 1 or 2. This continues previous work in which cc(▪) was determined for perfect matchings G.</abstract><cop>The Netherlands</cop><pub>Elsevier Science & Technology</pub><doi>10.1016/S0304-0208(08)73020-2</doi><oclcid>476217176</oclcid><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-0208 |
ispartof | Cycles in Graphs, 1985, Vol.115, p.257-267 |
issn | 0304-0208 |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_404144_33_268 |
source | Elsevier ScienceDirect Journals; ScienceDirect eBooks |
subjects | Combinatorics & graph theory Optimization |
title | Clique Coverings of Complements of Paths and Cycles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Clique%20Coverings%20of%20Complements%20of%20Paths%20and%20Cycles&rft.btitle=Cycles%20in%20Graphs&rft.au=de%20Caen,%20D.&rft.date=1985&rft.volume=115&rft.spage=257&rft.epage=267&rft.pages=257-267&rft.issn=0304-0208&rft.isbn=9780444878038&rft.isbn_list=0444878033&rft_id=info:doi/10.1016/S0304-0208(08)73020-2&rft_dat=%3Cproquest_elsev%3EEBC404144_33_268%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&rft.eisbn=0080872263&rft.eisbn_list=9780080872261&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC404144_33_268&rft_id=info:pmid/&rft_els_id=S0304020808730202&rfr_iscdi=true |