Integration Issues, Parameter Effects, and Variance Modeling

In this chapter, we investigate several issues around the Heston model. First, following Bakshi and Madan (2000), we show that the Heston call price can be expressed in terms of a single characteristic function. It is well‐known that the integrand for the call price can sometimes show high oscillati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rouah, Fabrice D
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue
container_start_page 25
container_title
container_volume
creator Rouah, Fabrice D
description In this chapter, we investigate several issues around the Heston model. First, following Bakshi and Madan (2000), we show that the Heston call price can be expressed in terms of a single characteristic function. It is well‐known that the integrand for the call price can sometimes show high oscillation, can dampen very slowly along the integration axis, and can show discontinuities. All of these problems can introduce inaccuracies in numerical integration. The “Little Trap” formulation of Albrecher et al. (2007) provides an easy fix to many of these problems. Next, we examine the effects of the Heston parameters on implied volatilities extracted from option prices generated with the Heston model. Borrowing from Gatheral (2006), we examine how the fair strike of a variance swap can be derived under the model and present approximations to local volatility and implied volatility from the model. Finally, we examine moment explosions derived by Andersen and Piterbarg (2007) and bounds on implied volatility of Lee (2004b).
doi_str_mv 10.1002/9781118656471.ch2
format Book Chapter
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_4037743_18_37</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4037743_18_37</sourcerecordid><originalsourceid>FETCH-LOGICAL-p166f-3e1d7a5a907b54e5c7af38e6a801bb1a648955354a5670f5c3c64ca13cdd188e3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhldEsdb-AG_5AabuZD8DXqRUDVT0oF6XyWbTRmMSsxHRX-_241Lw4MDMwPC8c3gIOQc6BUqTy1RpANBSSK5galfJATndHFIRxiGZ7ADBdSLUMRlpzpUSlPITMvH-lYZK9frBiFxlzeCWPQ5V20SZ95_OX0SP2OO7G1wfzcvS2SGcsCmiF-wrbKyL7tvC1VWzPCNHJdbeTXZ7TJ5v5k-zu3jxcJvNrhdxB1KWMXNQKBSYUpUL7oRVWDLtJGoKeQ4ouU6FYIKjkIqWwjIruUVgtihAa8fGBLZ_v6rafRuXt-2bN0DNWofZ02GCjnWHTPxHZp_9qboN3xVl4JMt3_XtR7AwbCPWNUOPtV1hF3x4wylTijMD2jD13xAwyaRMTCIMZ-wXKNSCQA</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC1363662_25_43</pqid></control><display><type>book_chapter</type><title>Integration Issues, Parameter Effects, and Variance Modeling</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Rouah, Fabrice D</creator><contributor>Rouah, Fabrice Douglas</contributor><creatorcontrib>Rouah, Fabrice D ; Rouah, Fabrice Douglas</creatorcontrib><description>In this chapter, we investigate several issues around the Heston model. First, following Bakshi and Madan (2000), we show that the Heston call price can be expressed in terms of a single characteristic function. It is well‐known that the integrand for the call price can sometimes show high oscillation, can dampen very slowly along the integration axis, and can show discontinuities. All of these problems can introduce inaccuracies in numerical integration. The “Little Trap” formulation of Albrecher et al. (2007) provides an easy fix to many of these problems. Next, we examine the effects of the Heston parameters on implied volatilities extracted from option prices generated with the Heston model. Borrowing from Gatheral (2006), we examine how the fair strike of a variance swap can be derived under the model and present approximations to local volatility and implied volatility from the model. Finally, we examine moment explosions derived by Andersen and Piterbarg (2007) and bounds on implied volatility of Lee (2004b).</description><identifier>ISBN: 9781118548257</identifier><identifier>ISBN: 1118548256</identifier><identifier>EISBN: 1118695186</identifier><identifier>EISBN: 9781118695180</identifier><identifier>EISBN: 9781118695173</identifier><identifier>EISBN: 1118695178</identifier><identifier>EISBN: 1118656474</identifier><identifier>EISBN: 9781118656471</identifier><identifier>DOI: 10.1002/9781118656471.ch2</identifier><identifier>OCLC: 844775004</identifier><identifier>LCCallNum: HG6024.A3 R6777 2013</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Incorporated</publisher><subject>Black‐Scholes ; discontinuity ; FINANCE &amp; ACCOUNTING ; implied volatility ; Integrand ; Little Trap ; local volatility ; moment explosion ; oscillation ; parameter effects ; variance modeling ; variance swap</subject><ispartof>The Heston Model and Its Extensions in Matlab and C#, 2013, p.25-61</ispartof><rights>Copyright © 2013 by Fabrice Douglas Rouah.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/1363662-l.jpg</thumbnail><link.rule.ids>779,780,784,793,27924</link.rule.ids></links><search><contributor>Rouah, Fabrice Douglas</contributor><creatorcontrib>Rouah, Fabrice D</creatorcontrib><title>Integration Issues, Parameter Effects, and Variance Modeling</title><title>The Heston Model and Its Extensions in Matlab and C#</title><description>In this chapter, we investigate several issues around the Heston model. First, following Bakshi and Madan (2000), we show that the Heston call price can be expressed in terms of a single characteristic function. It is well‐known that the integrand for the call price can sometimes show high oscillation, can dampen very slowly along the integration axis, and can show discontinuities. All of these problems can introduce inaccuracies in numerical integration. The “Little Trap” formulation of Albrecher et al. (2007) provides an easy fix to many of these problems. Next, we examine the effects of the Heston parameters on implied volatilities extracted from option prices generated with the Heston model. Borrowing from Gatheral (2006), we examine how the fair strike of a variance swap can be derived under the model and present approximations to local volatility and implied volatility from the model. Finally, we examine moment explosions derived by Andersen and Piterbarg (2007) and bounds on implied volatility of Lee (2004b).</description><subject>Black‐Scholes</subject><subject>discontinuity</subject><subject>FINANCE &amp; ACCOUNTING</subject><subject>implied volatility</subject><subject>Integrand</subject><subject>Little Trap</subject><subject>local volatility</subject><subject>moment explosion</subject><subject>oscillation</subject><subject>parameter effects</subject><subject>variance modeling</subject><subject>variance swap</subject><isbn>9781118548257</isbn><isbn>1118548256</isbn><isbn>1118695186</isbn><isbn>9781118695180</isbn><isbn>9781118695173</isbn><isbn>1118695178</isbn><isbn>1118656474</isbn><isbn>9781118656471</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2013</creationdate><recordtype>book_chapter</recordtype><recordid>eNqNkE1Lw0AQhldEsdb-AG_5AabuZD8DXqRUDVT0oF6XyWbTRmMSsxHRX-_241Lw4MDMwPC8c3gIOQc6BUqTy1RpANBSSK5galfJATndHFIRxiGZ7ADBdSLUMRlpzpUSlPITMvH-lYZK9frBiFxlzeCWPQ5V20SZ95_OX0SP2OO7G1wfzcvS2SGcsCmiF-wrbKyL7tvC1VWzPCNHJdbeTXZ7TJ5v5k-zu3jxcJvNrhdxB1KWMXNQKBSYUpUL7oRVWDLtJGoKeQ4ouU6FYIKjkIqWwjIruUVgtihAa8fGBLZ_v6rafRuXt-2bN0DNWofZ02GCjnWHTPxHZp_9qboN3xVl4JMt3_XtR7AwbCPWNUOPtV1hF3x4wylTijMD2jD13xAwyaRMTCIMZ-wXKNSCQA</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Rouah, Fabrice D</creator><general>John Wiley &amp; Sons, Incorporated</general><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><scope>FFUUA</scope></search><sort><creationdate>2013</creationdate><title>Integration Issues, Parameter Effects, and Variance Modeling</title><author>Rouah, Fabrice D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p166f-3e1d7a5a907b54e5c7af38e6a801bb1a648955354a5670f5c3c64ca13cdd188e3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Black‐Scholes</topic><topic>discontinuity</topic><topic>FINANCE &amp; ACCOUNTING</topic><topic>implied volatility</topic><topic>Integrand</topic><topic>Little Trap</topic><topic>local volatility</topic><topic>moment explosion</topic><topic>oscillation</topic><topic>parameter effects</topic><topic>variance modeling</topic><topic>variance swap</topic><toplevel>online_resources</toplevel><creatorcontrib>Rouah, Fabrice D</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rouah, Fabrice D</au><au>Rouah, Fabrice Douglas</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Integration Issues, Parameter Effects, and Variance Modeling</atitle><btitle>The Heston Model and Its Extensions in Matlab and C#</btitle><date>2013</date><risdate>2013</risdate><spage>25</spage><epage>61</epage><pages>25-61</pages><isbn>9781118548257</isbn><isbn>1118548256</isbn><eisbn>1118695186</eisbn><eisbn>9781118695180</eisbn><eisbn>9781118695173</eisbn><eisbn>1118695178</eisbn><eisbn>1118656474</eisbn><eisbn>9781118656471</eisbn><abstract>In this chapter, we investigate several issues around the Heston model. First, following Bakshi and Madan (2000), we show that the Heston call price can be expressed in terms of a single characteristic function. It is well‐known that the integrand for the call price can sometimes show high oscillation, can dampen very slowly along the integration axis, and can show discontinuities. All of these problems can introduce inaccuracies in numerical integration. The “Little Trap” formulation of Albrecher et al. (2007) provides an easy fix to many of these problems. Next, we examine the effects of the Heston parameters on implied volatilities extracted from option prices generated with the Heston model. Borrowing from Gatheral (2006), we examine how the fair strike of a variance swap can be derived under the model and present approximations to local volatility and implied volatility from the model. Finally, we examine moment explosions derived by Andersen and Piterbarg (2007) and bounds on implied volatility of Lee (2004b).</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Incorporated</pub><doi>10.1002/9781118656471.ch2</doi><oclcid>844775004</oclcid><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9781118548257
ispartof The Heston Model and Its Extensions in Matlab and C#, 2013, p.25-61
issn
language eng
recordid cdi_proquest_ebookcentralchapters_4037743_18_37
source O'Reilly Online Learning: Academic/Public Library Edition
subjects Black‐Scholes
discontinuity
FINANCE & ACCOUNTING
implied volatility
Integrand
Little Trap
local volatility
moment explosion
oscillation
parameter effects
variance modeling
variance swap
title Integration Issues, Parameter Effects, and Variance Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Integration%20Issues,%20Parameter%20Effects,%20and%20Variance%20Modeling&rft.btitle=The%20Heston%20Model%20and%20Its%20Extensions%20in%20Matlab%20and%20C%23&rft.au=Rouah,%20Fabrice%20D&rft.date=2013&rft.spage=25&rft.epage=61&rft.pages=25-61&rft.isbn=9781118548257&rft.isbn_list=1118548256&rft_id=info:doi/10.1002/9781118656471.ch2&rft_dat=%3Cproquest_wiley%3EEBC4037743_18_37%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=1118695186&rft.eisbn_list=9781118695180&rft.eisbn_list=9781118695173&rft.eisbn_list=1118695178&rft.eisbn_list=1118656474&rft.eisbn_list=9781118656471&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC1363662_25_43&rft_id=info:pmid/&rfr_iscdi=true