Integration Issues, Parameter Effects, and Variance Modeling
In this chapter, we investigate several issues around the Heston model. First, following Bakshi and Madan (2000), we show that the Heston call price can be expressed in terms of a single characteristic function. It is well‐known that the integrand for the call price can sometimes show high oscillati...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61 |
---|---|
container_issue | |
container_start_page | 25 |
container_title | |
container_volume | |
creator | Rouah, Fabrice D |
description | In this chapter, we investigate several issues around the Heston model. First, following Bakshi and Madan (2000), we show that the Heston call price can be expressed in terms of a single characteristic function. It is well‐known that the integrand for the call price can sometimes show high oscillation, can dampen very slowly along the integration axis, and can show discontinuities. All of these problems can introduce inaccuracies in numerical integration. The “Little Trap” formulation of Albrecher et al. (2007) provides an easy fix to many of these problems. Next, we examine the effects of the Heston parameters on implied volatilities extracted from option prices generated with the Heston model. Borrowing from Gatheral (2006), we examine how the fair strike of a variance swap can be derived under the model and present approximations to local volatility and implied volatility from the model. Finally, we examine moment explosions derived by Andersen and Piterbarg (2007) and bounds on implied volatility of Lee (2004b). |
doi_str_mv | 10.1002/9781118656471.ch2 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_4037743_18_37</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4037743_18_37</sourcerecordid><originalsourceid>FETCH-LOGICAL-p166f-3e1d7a5a907b54e5c7af38e6a801bb1a648955354a5670f5c3c64ca13cdd188e3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhldEsdb-AG_5AabuZD8DXqRUDVT0oF6XyWbTRmMSsxHRX-_241Lw4MDMwPC8c3gIOQc6BUqTy1RpANBSSK5galfJATndHFIRxiGZ7ADBdSLUMRlpzpUSlPITMvH-lYZK9frBiFxlzeCWPQ5V20SZ95_OX0SP2OO7G1wfzcvS2SGcsCmiF-wrbKyL7tvC1VWzPCNHJdbeTXZ7TJ5v5k-zu3jxcJvNrhdxB1KWMXNQKBSYUpUL7oRVWDLtJGoKeQ4ouU6FYIKjkIqWwjIruUVgtihAa8fGBLZ_v6rafRuXt-2bN0DNWofZ02GCjnWHTPxHZp_9qboN3xVl4JMt3_XtR7AwbCPWNUOPtV1hF3x4wylTijMD2jD13xAwyaRMTCIMZ-wXKNSCQA</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC1363662_25_43</pqid></control><display><type>book_chapter</type><title>Integration Issues, Parameter Effects, and Variance Modeling</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Rouah, Fabrice D</creator><contributor>Rouah, Fabrice Douglas</contributor><creatorcontrib>Rouah, Fabrice D ; Rouah, Fabrice Douglas</creatorcontrib><description>In this chapter, we investigate several issues around the Heston model. First, following Bakshi and Madan (2000), we show that the Heston call price can be expressed in terms of a single characteristic function. It is well‐known that the integrand for the call price can sometimes show high oscillation, can dampen very slowly along the integration axis, and can show discontinuities. All of these problems can introduce inaccuracies in numerical integration. The “Little Trap” formulation of Albrecher et al. (2007) provides an easy fix to many of these problems. Next, we examine the effects of the Heston parameters on implied volatilities extracted from option prices generated with the Heston model. Borrowing from Gatheral (2006), we examine how the fair strike of a variance swap can be derived under the model and present approximations to local volatility and implied volatility from the model. Finally, we examine moment explosions derived by Andersen and Piterbarg (2007) and bounds on implied volatility of Lee (2004b).</description><identifier>ISBN: 9781118548257</identifier><identifier>ISBN: 1118548256</identifier><identifier>EISBN: 1118695186</identifier><identifier>EISBN: 9781118695180</identifier><identifier>EISBN: 9781118695173</identifier><identifier>EISBN: 1118695178</identifier><identifier>EISBN: 1118656474</identifier><identifier>EISBN: 9781118656471</identifier><identifier>DOI: 10.1002/9781118656471.ch2</identifier><identifier>OCLC: 844775004</identifier><identifier>LCCallNum: HG6024.A3 R6777 2013</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Incorporated</publisher><subject>Black‐Scholes ; discontinuity ; FINANCE & ACCOUNTING ; implied volatility ; Integrand ; Little Trap ; local volatility ; moment explosion ; oscillation ; parameter effects ; variance modeling ; variance swap</subject><ispartof>The Heston Model and Its Extensions in Matlab and C#, 2013, p.25-61</ispartof><rights>Copyright © 2013 by Fabrice Douglas Rouah.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/1363662-l.jpg</thumbnail><link.rule.ids>779,780,784,793,27924</link.rule.ids></links><search><contributor>Rouah, Fabrice Douglas</contributor><creatorcontrib>Rouah, Fabrice D</creatorcontrib><title>Integration Issues, Parameter Effects, and Variance Modeling</title><title>The Heston Model and Its Extensions in Matlab and C#</title><description>In this chapter, we investigate several issues around the Heston model. First, following Bakshi and Madan (2000), we show that the Heston call price can be expressed in terms of a single characteristic function. It is well‐known that the integrand for the call price can sometimes show high oscillation, can dampen very slowly along the integration axis, and can show discontinuities. All of these problems can introduce inaccuracies in numerical integration. The “Little Trap” formulation of Albrecher et al. (2007) provides an easy fix to many of these problems. Next, we examine the effects of the Heston parameters on implied volatilities extracted from option prices generated with the Heston model. Borrowing from Gatheral (2006), we examine how the fair strike of a variance swap can be derived under the model and present approximations to local volatility and implied volatility from the model. Finally, we examine moment explosions derived by Andersen and Piterbarg (2007) and bounds on implied volatility of Lee (2004b).</description><subject>Black‐Scholes</subject><subject>discontinuity</subject><subject>FINANCE & ACCOUNTING</subject><subject>implied volatility</subject><subject>Integrand</subject><subject>Little Trap</subject><subject>local volatility</subject><subject>moment explosion</subject><subject>oscillation</subject><subject>parameter effects</subject><subject>variance modeling</subject><subject>variance swap</subject><isbn>9781118548257</isbn><isbn>1118548256</isbn><isbn>1118695186</isbn><isbn>9781118695180</isbn><isbn>9781118695173</isbn><isbn>1118695178</isbn><isbn>1118656474</isbn><isbn>9781118656471</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2013</creationdate><recordtype>book_chapter</recordtype><recordid>eNqNkE1Lw0AQhldEsdb-AG_5AabuZD8DXqRUDVT0oF6XyWbTRmMSsxHRX-_241Lw4MDMwPC8c3gIOQc6BUqTy1RpANBSSK5galfJATndHFIRxiGZ7ADBdSLUMRlpzpUSlPITMvH-lYZK9frBiFxlzeCWPQ5V20SZ95_OX0SP2OO7G1wfzcvS2SGcsCmiF-wrbKyL7tvC1VWzPCNHJdbeTXZ7TJ5v5k-zu3jxcJvNrhdxB1KWMXNQKBSYUpUL7oRVWDLtJGoKeQ4ouU6FYIKjkIqWwjIruUVgtihAa8fGBLZ_v6rafRuXt-2bN0DNWofZ02GCjnWHTPxHZp_9qboN3xVl4JMt3_XtR7AwbCPWNUOPtV1hF3x4wylTijMD2jD13xAwyaRMTCIMZ-wXKNSCQA</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Rouah, Fabrice D</creator><general>John Wiley & Sons, Incorporated</general><general>Wiley</general><general>John Wiley & Sons, Inc</general><scope>FFUUA</scope></search><sort><creationdate>2013</creationdate><title>Integration Issues, Parameter Effects, and Variance Modeling</title><author>Rouah, Fabrice D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p166f-3e1d7a5a907b54e5c7af38e6a801bb1a648955354a5670f5c3c64ca13cdd188e3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Black‐Scholes</topic><topic>discontinuity</topic><topic>FINANCE & ACCOUNTING</topic><topic>implied volatility</topic><topic>Integrand</topic><topic>Little Trap</topic><topic>local volatility</topic><topic>moment explosion</topic><topic>oscillation</topic><topic>parameter effects</topic><topic>variance modeling</topic><topic>variance swap</topic><toplevel>online_resources</toplevel><creatorcontrib>Rouah, Fabrice D</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rouah, Fabrice D</au><au>Rouah, Fabrice Douglas</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Integration Issues, Parameter Effects, and Variance Modeling</atitle><btitle>The Heston Model and Its Extensions in Matlab and C#</btitle><date>2013</date><risdate>2013</risdate><spage>25</spage><epage>61</epage><pages>25-61</pages><isbn>9781118548257</isbn><isbn>1118548256</isbn><eisbn>1118695186</eisbn><eisbn>9781118695180</eisbn><eisbn>9781118695173</eisbn><eisbn>1118695178</eisbn><eisbn>1118656474</eisbn><eisbn>9781118656471</eisbn><abstract>In this chapter, we investigate several issues around the Heston model. First, following Bakshi and Madan (2000), we show that the Heston call price can be expressed in terms of a single characteristic function. It is well‐known that the integrand for the call price can sometimes show high oscillation, can dampen very slowly along the integration axis, and can show discontinuities. All of these problems can introduce inaccuracies in numerical integration. The “Little Trap” formulation of Albrecher et al. (2007) provides an easy fix to many of these problems. Next, we examine the effects of the Heston parameters on implied volatilities extracted from option prices generated with the Heston model. Borrowing from Gatheral (2006), we examine how the fair strike of a variance swap can be derived under the model and present approximations to local volatility and implied volatility from the model. Finally, we examine moment explosions derived by Andersen and Piterbarg (2007) and bounds on implied volatility of Lee (2004b).</abstract><cop>United States</cop><pub>John Wiley & Sons, Incorporated</pub><doi>10.1002/9781118656471.ch2</doi><oclcid>844775004</oclcid><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9781118548257 |
ispartof | The Heston Model and Its Extensions in Matlab and C#, 2013, p.25-61 |
issn | |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_4037743_18_37 |
source | O'Reilly Online Learning: Academic/Public Library Edition |
subjects | Black‐Scholes discontinuity FINANCE & ACCOUNTING implied volatility Integrand Little Trap local volatility moment explosion oscillation parameter effects variance modeling variance swap |
title | Integration Issues, Parameter Effects, and Variance Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Integration%20Issues,%20Parameter%20Effects,%20and%20Variance%20Modeling&rft.btitle=The%20Heston%20Model%20and%20Its%20Extensions%20in%20Matlab%20and%20C%23&rft.au=Rouah,%20Fabrice%20D&rft.date=2013&rft.spage=25&rft.epage=61&rft.pages=25-61&rft.isbn=9781118548257&rft.isbn_list=1118548256&rft_id=info:doi/10.1002/9781118656471.ch2&rft_dat=%3Cproquest_wiley%3EEBC4037743_18_37%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=1118695186&rft.eisbn_list=9781118695180&rft.eisbn_list=9781118695173&rft.eisbn_list=1118695178&rft.eisbn_list=1118656474&rft.eisbn_list=9781118656471&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC1363662_25_43&rft_id=info:pmid/&rfr_iscdi=true |