Genotype-by-Location Two-Way Data Analysis

Analysis of a genotype‐by‐location two‐way table for a key trait has been the most important topic of variety trial data analysis and has commonly been referred to as genotype‐by‐environment data analysis or multi‐environment trial (MET) data analysis. Although the focus of variety trial data analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Yan, Weikai
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue
container_start_page 133
container_title
container_volume
creator Yan, Weikai
description Analysis of a genotype‐by‐location two‐way table for a key trait has been the most important topic of variety trial data analysis and has commonly been referred to as genotype‐by‐environment data analysis or multi‐environment trial (MET) data analysis. Although the focus of variety trial data analysis is on economically important traits, traits with high heritability, with or without important economic values, are useful for detecting human errors. Genotype‐by‐location data analysis includes three main aspects: mega‐environment analysis, test location evaluation, and genotype evaluation. All these aspects can be graphically addressed using GGE biplot analysis, supplemented with numerical outputs. The use of different biplot forms in mega‐environment analysis, test location evaluation, and genotype evaluation are described in this chapter. Summary statistics of grain yield at individual locations are presented in the chapter.
doi_str_mv 10.1002/9781118688571.ch8
format Book Chapter
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_4037658_50_178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC1650860_186_143</sourcerecordid><originalsourceid>FETCH-LOGICAL-p254f-6d3628f2f6cbe9ce3af71b4a5dc08d8b9907c4a7e4d1c2bdea86361c03db05723</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhiOiqLU_wFvPQmpm87nHUrUKBS8VjyFfS1eXzdqslPXXm1IVFA8ehmGG93mHdxC6ADIFQoqrUioAUEIpLmHq1uoAnX0tODv8HgSjx-hUiZIIIQp1gsYpPRNCACiUXJ6iy0VoYz90AdsBL6MzfR3byWob8ZMZJtemN5NZa5oh1ekcHVWmSWH82Ufo8fZmNb_Dy4fF_Xy2xF3BWYWFp_lSVVTC2VC6QE0lwTLDvSPKK1uWRDpmZGAeXGF9MEpQAY5QbwmXBR0hvPfd1k0YdLAxviT9I7F-rzudU-vOV1kPf-iB6N2nfnE7Jldm6J7pNvH1LaR-j7nQ9hvTuLXp-rBJmhEqBVeaZzO5o9h_KBCcKJERJTQwSj8AGQB8fQ</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC1650860_186_143</pqid></control><display><type>book_chapter</type><title>Genotype-by-Location Two-Way Data Analysis</title><source>Wiley Online Library All Obooks</source><creator>Yan, Weikai</creator><contributor>Yan, Weikai</contributor><creatorcontrib>Yan, Weikai ; Yan, Weikai</creatorcontrib><description>Analysis of a genotype‐by‐location two‐way table for a key trait has been the most important topic of variety trial data analysis and has commonly been referred to as genotype‐by‐environment data analysis or multi‐environment trial (MET) data analysis. Although the focus of variety trial data analysis is on economically important traits, traits with high heritability, with or without important economic values, are useful for detecting human errors. Genotype‐by‐location data analysis includes three main aspects: mega‐environment analysis, test location evaluation, and genotype evaluation. All these aspects can be graphically addressed using GGE biplot analysis, supplemented with numerical outputs. The use of different biplot forms in mega‐environment analysis, test location evaluation, and genotype evaluation are described in this chapter. Summary statistics of grain yield at individual locations are presented in the chapter.</description><identifier>ISBN: 1118688643</identifier><identifier>ISBN: 9781118688649</identifier><identifier>EISBN: 1118688554</identifier><identifier>EISBN: 9781118688557</identifier><identifier>EISBN: 1118688562</identifier><identifier>EISBN: 9781118688564</identifier><identifier>EISBN: 1118688570</identifier><identifier>EISBN: 9781118688571</identifier><identifier>DOI: 10.1002/9781118688571.ch8</identifier><identifier>OCLC: 869066628</identifier><identifier>LCCallNum: SB123.45 .Y36 2014</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Incorporated</publisher><subject>AGRICULTURE &amp; FARMING ; BIOLOGY, LIFE SCIENCES ; biplot analysis ; Crop husbandry ; genotype evaluation ; genotype‐by‐location two‐way data analysis ; GGE biplot analysis ; highly heritable traits ; human errors ; individual trials ; mega‐environment analysis ; test location evaluation</subject><ispartof>Crop Variety Trials, 2014, p.133-162</ispartof><rights>This edition first published 2014 © 2014 John Wiley &amp; Sons, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/1650860-l.jpg</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118688571.ch8$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002/9781118688571.ch8$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>779,780,784,793,4321,24779,27923,52530,52678</link.rule.ids></links><search><contributor>Yan, Weikai</contributor><creatorcontrib>Yan, Weikai</creatorcontrib><title>Genotype-by-Location Two-Way Data Analysis</title><title>Crop Variety Trials</title><description>Analysis of a genotype‐by‐location two‐way table for a key trait has been the most important topic of variety trial data analysis and has commonly been referred to as genotype‐by‐environment data analysis or multi‐environment trial (MET) data analysis. Although the focus of variety trial data analysis is on economically important traits, traits with high heritability, with or without important economic values, are useful for detecting human errors. Genotype‐by‐location data analysis includes three main aspects: mega‐environment analysis, test location evaluation, and genotype evaluation. All these aspects can be graphically addressed using GGE biplot analysis, supplemented with numerical outputs. The use of different biplot forms in mega‐environment analysis, test location evaluation, and genotype evaluation are described in this chapter. Summary statistics of grain yield at individual locations are presented in the chapter.</description><subject>AGRICULTURE &amp; FARMING</subject><subject>BIOLOGY, LIFE SCIENCES</subject><subject>biplot analysis</subject><subject>Crop husbandry</subject><subject>genotype evaluation</subject><subject>genotype‐by‐location two‐way data analysis</subject><subject>GGE biplot analysis</subject><subject>highly heritable traits</subject><subject>human errors</subject><subject>individual trials</subject><subject>mega‐environment analysis</subject><subject>test location evaluation</subject><isbn>1118688643</isbn><isbn>9781118688649</isbn><isbn>1118688554</isbn><isbn>9781118688557</isbn><isbn>1118688562</isbn><isbn>9781118688564</isbn><isbn>1118688570</isbn><isbn>9781118688571</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2014</creationdate><recordtype>book_chapter</recordtype><recordid>eNqNkE1LAzEQhiOiqLU_wFvPQmpm87nHUrUKBS8VjyFfS1eXzdqslPXXm1IVFA8ehmGG93mHdxC6ADIFQoqrUioAUEIpLmHq1uoAnX0tODv8HgSjx-hUiZIIIQp1gsYpPRNCACiUXJ6iy0VoYz90AdsBL6MzfR3byWob8ZMZJtemN5NZa5oh1ekcHVWmSWH82Ufo8fZmNb_Dy4fF_Xy2xF3BWYWFp_lSVVTC2VC6QE0lwTLDvSPKK1uWRDpmZGAeXGF9MEpQAY5QbwmXBR0hvPfd1k0YdLAxviT9I7F-rzudU-vOV1kPf-iB6N2nfnE7Jldm6J7pNvH1LaR-j7nQ9hvTuLXp-rBJmhEqBVeaZzO5o9h_KBCcKJERJTQwSj8AGQB8fQ</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Yan, Weikai</creator><general>John Wiley &amp; Sons, Incorporated</general><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><scope>FFUUA</scope></search><sort><creationdate>2014</creationdate><title>Genotype-by-Location Two-Way Data Analysis</title><author>Yan, Weikai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p254f-6d3628f2f6cbe9ce3af71b4a5dc08d8b9907c4a7e4d1c2bdea86361c03db05723</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AGRICULTURE &amp; FARMING</topic><topic>BIOLOGY, LIFE SCIENCES</topic><topic>biplot analysis</topic><topic>Crop husbandry</topic><topic>genotype evaluation</topic><topic>genotype‐by‐location two‐way data analysis</topic><topic>GGE biplot analysis</topic><topic>highly heritable traits</topic><topic>human errors</topic><topic>individual trials</topic><topic>mega‐environment analysis</topic><topic>test location evaluation</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan, Weikai</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Weikai</au><au>Yan, Weikai</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Genotype-by-Location Two-Way Data Analysis</atitle><btitle>Crop Variety Trials</btitle><date>2014</date><risdate>2014</risdate><spage>133</spage><epage>162</epage><pages>133-162</pages><isbn>1118688643</isbn><isbn>9781118688649</isbn><eisbn>1118688554</eisbn><eisbn>9781118688557</eisbn><eisbn>1118688562</eisbn><eisbn>9781118688564</eisbn><eisbn>1118688570</eisbn><eisbn>9781118688571</eisbn><abstract>Analysis of a genotype‐by‐location two‐way table for a key trait has been the most important topic of variety trial data analysis and has commonly been referred to as genotype‐by‐environment data analysis or multi‐environment trial (MET) data analysis. Although the focus of variety trial data analysis is on economically important traits, traits with high heritability, with or without important economic values, are useful for detecting human errors. Genotype‐by‐location data analysis includes three main aspects: mega‐environment analysis, test location evaluation, and genotype evaluation. All these aspects can be graphically addressed using GGE biplot analysis, supplemented with numerical outputs. The use of different biplot forms in mega‐environment analysis, test location evaluation, and genotype evaluation are described in this chapter. Summary statistics of grain yield at individual locations are presented in the chapter.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Incorporated</pub><doi>10.1002/9781118688571.ch8</doi><oclcid>869066628</oclcid><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISBN: 1118688643
ispartof Crop Variety Trials, 2014, p.133-162
issn
language eng
recordid cdi_proquest_ebookcentralchapters_4037658_50_178
source Wiley Online Library All Obooks
subjects AGRICULTURE & FARMING
BIOLOGY, LIFE SCIENCES
biplot analysis
Crop husbandry
genotype evaluation
genotype‐by‐location two‐way data analysis
GGE biplot analysis
highly heritable traits
human errors
individual trials
mega‐environment analysis
test location evaluation
title Genotype-by-Location Two-Way Data Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Genotype-by-Location%20Two-Way%20Data%20Analysis&rft.btitle=Crop%20Variety%20Trials&rft.au=Yan,%20Weikai&rft.date=2014&rft.spage=133&rft.epage=162&rft.pages=133-162&rft.isbn=1118688643&rft.isbn_list=9781118688649&rft_id=info:doi/10.1002/9781118688571.ch8&rft_dat=%3Cproquest_wiley%3EEBC1650860_186_143%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=1118688554&rft.eisbn_list=9781118688557&rft.eisbn_list=1118688562&rft.eisbn_list=9781118688564&rft.eisbn_list=1118688570&rft.eisbn_list=9781118688571&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC1650860_186_143&rft_id=info:pmid/&rfr_iscdi=true