MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections

3D Gaussian Splatting showcases notable advancements in photo-realistic and real-time novel view synthesis. However, it faces challenges in modeling mirror reflections, which exhibit substantial appearance variations from different viewpoints. To tackle this problem, we present MirrorGaussian, the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu, Jiayue, Tang, Xiao, Cheng, Freeman, Yang, Roy, Li, Zhihao, Liu, Jianzhuang, Huang, Yi, Lin, Jiaqi, Liu, Shiyong, Wu, Xiaofei, Xu, Songcen, Yuan, Chun
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue
container_start_page 377
container_title
container_volume
creator Liu, Jiayue
Tang, Xiao
Cheng, Freeman
Yang, Roy
Li, Zhihao
Liu, Jianzhuang
Huang, Yi
Lin, Jiaqi
Liu, Shiyong
Wu, Xiaofei
Xu, Songcen
Yuan, Chun
description 3D Gaussian Splatting showcases notable advancements in photo-realistic and real-time novel view synthesis. However, it faces challenges in modeling mirror reflections, which exhibit substantial appearance variations from different viewpoints. To tackle this problem, we present MirrorGaussian, the first method for mirror scene reconstruction with real-time rendering based on 3D Gaussian Splatting. The key insight is grounded on the mirror symmetry between the real-world space and the virtual mirror space. We introduce an intuitive dual-rendering strategy that enables differentiable rasterization of both the real-world 3D Gaussians and the mirrored counterpart obtained by reflecting the former about the mirror plane. All 3D Gaussians are jointly optimized with the mirror plane in an end-to-end framework. MirrorGaussian achieves high-quality and real-time rendering in scenes with mirrors, empowering scene editing like adding new mirrors and objects. Comprehensive experiments on multiple datasets demonstrate that our approach significantly outperforms existing methods, achieving state-of-the-art results. Project page: https://mirror-gaussian.github.io/.
doi_str_mv 10.1007/978-3-031-73220-1_22
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_978_3_031_73220_1_22</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_978_3_031_73220_1_22</sourcerecordid><originalsourceid>FETCH-LOGICAL-p174t-a4d8c7571642e089666422dee56cf9d15eb5566846fd3d0e712767b0818b08700</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhc2fRFp6Axa5gGHGdjwxO1SgIBWQKlhb-XFQoEoqO70PZ-FkuE1hMzN6b95o9DF2iXCFAHRtKOeSg0ROUgjgaIU4YrMoyyjuNTxmCWpELqUyJ2xyMNDQKUtAguCGlDxnkxA-AUCQEQl7eW697_2i2IbQFt1NunLN2lVD232k8i7900Pa9P7ne-WqvguD344LY_Y_Eq0LdtYU6-Bmhz5l7w_3b_NHvnxdPM1vl3yDpAZeqDqvKCPUSjjIjdZxELVzma4aU2PmyizTOle6qWUNjlCQphJyzGMhgCkT492w8fET523Z91_BItgdLhu5WGkjALtHY3e44BcRRFlT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections</title><creator>Liu, Jiayue ; Tang, Xiao ; Cheng, Freeman ; Yang, Roy ; Li, Zhihao ; Liu, Jianzhuang ; Huang, Yi ; Lin, Jiaqi ; Liu, Shiyong ; Wu, Xiaofei ; Xu, Songcen ; Yuan, Chun</creator><contributor>Sattler, Torsten ; Leonardis, Aleš ; Ricci, Elisa ; Varol, Gül ; Roth, Stefan ; Russakovsky, Olga</contributor><creatorcontrib>Liu, Jiayue ; Tang, Xiao ; Cheng, Freeman ; Yang, Roy ; Li, Zhihao ; Liu, Jianzhuang ; Huang, Yi ; Lin, Jiaqi ; Liu, Shiyong ; Wu, Xiaofei ; Xu, Songcen ; Yuan, Chun ; Sattler, Torsten ; Leonardis, Aleš ; Ricci, Elisa ; Varol, Gül ; Roth, Stefan ; Russakovsky, Olga</creatorcontrib><description>3D Gaussian Splatting showcases notable advancements in photo-realistic and real-time novel view synthesis. However, it faces challenges in modeling mirror reflections, which exhibit substantial appearance variations from different viewpoints. To tackle this problem, we present MirrorGaussian, the first method for mirror scene reconstruction with real-time rendering based on 3D Gaussian Splatting. The key insight is grounded on the mirror symmetry between the real-world space and the virtual mirror space. We introduce an intuitive dual-rendering strategy that enables differentiable rasterization of both the real-world 3D Gaussians and the mirrored counterpart obtained by reflecting the former about the mirror plane. All 3D Gaussians are jointly optimized with the mirror plane in an end-to-end framework. MirrorGaussian achieves high-quality and real-time rendering in scenes with mirrors, empowering scene editing like adding new mirrors and objects. Comprehensive experiments on multiple datasets demonstrate that our approach significantly outperforms existing methods, achieving state-of-the-art results. Project page: https://mirror-gaussian.github.io/.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3031732197</identifier><identifier>ISBN: 9783031732195</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783031732201</identifier><identifier>EISBN: 3031732200</identifier><identifier>DOI: 10.1007/978-3-031-73220-1_22</identifier><language>eng</language><publisher>Cham: Springer Nature Switzerland</publisher><subject>3D Gaussian Splatting ; Mirror Reflections ; Novel View Synthesis ; Real-Time Rendering</subject><ispartof>Computer Vision – ECCV 2024, 2024, p.377-393</ispartof><rights>The Author(s), under exclusive license to Springer Nature Switzerland AG 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,777</link.rule.ids></links><search><contributor>Sattler, Torsten</contributor><contributor>Leonardis, Aleš</contributor><contributor>Ricci, Elisa</contributor><contributor>Varol, Gül</contributor><contributor>Roth, Stefan</contributor><contributor>Russakovsky, Olga</contributor><creatorcontrib>Liu, Jiayue</creatorcontrib><creatorcontrib>Tang, Xiao</creatorcontrib><creatorcontrib>Cheng, Freeman</creatorcontrib><creatorcontrib>Yang, Roy</creatorcontrib><creatorcontrib>Li, Zhihao</creatorcontrib><creatorcontrib>Liu, Jianzhuang</creatorcontrib><creatorcontrib>Huang, Yi</creatorcontrib><creatorcontrib>Lin, Jiaqi</creatorcontrib><creatorcontrib>Liu, Shiyong</creatorcontrib><creatorcontrib>Wu, Xiaofei</creatorcontrib><creatorcontrib>Xu, Songcen</creatorcontrib><creatorcontrib>Yuan, Chun</creatorcontrib><title>MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections</title><title>Computer Vision – ECCV 2024</title><description>3D Gaussian Splatting showcases notable advancements in photo-realistic and real-time novel view synthesis. However, it faces challenges in modeling mirror reflections, which exhibit substantial appearance variations from different viewpoints. To tackle this problem, we present MirrorGaussian, the first method for mirror scene reconstruction with real-time rendering based on 3D Gaussian Splatting. The key insight is grounded on the mirror symmetry between the real-world space and the virtual mirror space. We introduce an intuitive dual-rendering strategy that enables differentiable rasterization of both the real-world 3D Gaussians and the mirrored counterpart obtained by reflecting the former about the mirror plane. All 3D Gaussians are jointly optimized with the mirror plane in an end-to-end framework. MirrorGaussian achieves high-quality and real-time rendering in scenes with mirrors, empowering scene editing like adding new mirrors and objects. Comprehensive experiments on multiple datasets demonstrate that our approach significantly outperforms existing methods, achieving state-of-the-art results. Project page: https://mirror-gaussian.github.io/.</description><subject>3D Gaussian Splatting</subject><subject>Mirror Reflections</subject><subject>Novel View Synthesis</subject><subject>Real-Time Rendering</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3031732197</isbn><isbn>9783031732195</isbn><isbn>9783031732201</isbn><isbn>3031732200</isbn><fulltext>false</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2024</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNo9kE1OwzAQhc2fRFp6Axa5gGHGdjwxO1SgIBWQKlhb-XFQoEoqO70PZ-FkuE1hMzN6b95o9DF2iXCFAHRtKOeSg0ROUgjgaIU4YrMoyyjuNTxmCWpELqUyJ2xyMNDQKUtAguCGlDxnkxA-AUCQEQl7eW697_2i2IbQFt1NunLN2lVD232k8i7900Pa9P7ne-WqvguD344LY_Y_Eq0LdtYU6-Bmhz5l7w_3b_NHvnxdPM1vl3yDpAZeqDqvKCPUSjjIjdZxELVzma4aU2PmyizTOle6qWUNjlCQphJyzGMhgCkT492w8fET523Z91_BItgdLhu5WGkjALtHY3e44BcRRFlT</recordid><startdate>20241103</startdate><enddate>20241103</enddate><creator>Liu, Jiayue</creator><creator>Tang, Xiao</creator><creator>Cheng, Freeman</creator><creator>Yang, Roy</creator><creator>Li, Zhihao</creator><creator>Liu, Jianzhuang</creator><creator>Huang, Yi</creator><creator>Lin, Jiaqi</creator><creator>Liu, Shiyong</creator><creator>Wu, Xiaofei</creator><creator>Xu, Songcen</creator><creator>Yuan, Chun</creator><general>Springer Nature Switzerland</general><scope/></search><sort><creationdate>20241103</creationdate><title>MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections</title><author>Liu, Jiayue ; Tang, Xiao ; Cheng, Freeman ; Yang, Roy ; Li, Zhihao ; Liu, Jianzhuang ; Huang, Yi ; Lin, Jiaqi ; Liu, Shiyong ; Wu, Xiaofei ; Xu, Songcen ; Yuan, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p174t-a4d8c7571642e089666422dee56cf9d15eb5566846fd3d0e712767b0818b08700</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D Gaussian Splatting</topic><topic>Mirror Reflections</topic><topic>Novel View Synthesis</topic><topic>Real-Time Rendering</topic><toplevel>peer_reviewed</toplevel><creatorcontrib>Liu, Jiayue</creatorcontrib><creatorcontrib>Tang, Xiao</creatorcontrib><creatorcontrib>Cheng, Freeman</creatorcontrib><creatorcontrib>Yang, Roy</creatorcontrib><creatorcontrib>Li, Zhihao</creatorcontrib><creatorcontrib>Liu, Jianzhuang</creatorcontrib><creatorcontrib>Huang, Yi</creatorcontrib><creatorcontrib>Lin, Jiaqi</creatorcontrib><creatorcontrib>Liu, Shiyong</creatorcontrib><creatorcontrib>Wu, Xiaofei</creatorcontrib><creatorcontrib>Xu, Songcen</creatorcontrib><creatorcontrib>Yuan, Chun</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>no_fulltext</fulltext></delivery><addata><au>Liu, Jiayue</au><au>Tang, Xiao</au><au>Cheng, Freeman</au><au>Yang, Roy</au><au>Li, Zhihao</au><au>Liu, Jianzhuang</au><au>Huang, Yi</au><au>Lin, Jiaqi</au><au>Liu, Shiyong</au><au>Wu, Xiaofei</au><au>Xu, Songcen</au><au>Yuan, Chun</au><au>Sattler, Torsten</au><au>Leonardis, Aleš</au><au>Ricci, Elisa</au><au>Varol, Gül</au><au>Roth, Stefan</au><au>Russakovsky, Olga</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections</atitle><btitle>Computer Vision – ECCV 2024</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2024-11-03</date><risdate>2024</risdate><spage>377</spage><epage>393</epage><pages>377-393</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3031732197</isbn><isbn>9783031732195</isbn><eisbn>9783031732201</eisbn><eisbn>3031732200</eisbn><abstract>3D Gaussian Splatting showcases notable advancements in photo-realistic and real-time novel view synthesis. However, it faces challenges in modeling mirror reflections, which exhibit substantial appearance variations from different viewpoints. To tackle this problem, we present MirrorGaussian, the first method for mirror scene reconstruction with real-time rendering based on 3D Gaussian Splatting. The key insight is grounded on the mirror symmetry between the real-world space and the virtual mirror space. We introduce an intuitive dual-rendering strategy that enables differentiable rasterization of both the real-world 3D Gaussians and the mirrored counterpart obtained by reflecting the former about the mirror plane. All 3D Gaussians are jointly optimized with the mirror plane in an end-to-end framework. MirrorGaussian achieves high-quality and real-time rendering in scenes with mirrors, empowering scene editing like adding new mirrors and objects. Comprehensive experiments on multiple datasets demonstrate that our approach significantly outperforms existing methods, achieving state-of-the-art results. Project page: https://mirror-gaussian.github.io/.</abstract><cop>Cham</cop><pub>Springer Nature Switzerland</pub><doi>10.1007/978-3-031-73220-1_22</doi><tpages>17</tpages></addata></record>
fulltext no_fulltext
identifier ISSN: 0302-9743
ispartof Computer Vision – ECCV 2024, 2024, p.377-393
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_978_3_031_73220_1_22
source
subjects 3D Gaussian Splatting
Mirror Reflections
Novel View Synthesis
Real-Time Rendering
title MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=MirrorGaussian:%20Reflecting%203D%20Gaussians%20for%C2%A0Reconstructing%20Mirror%20Reflections&rft.btitle=Computer%20Vision%20%E2%80%93%20ECCV%202024&rft.au=Liu,%20Jiayue&rft.date=2024-11-03&rft.spage=377&rft.epage=393&rft.pages=377-393&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3031732197&rft.isbn_list=9783031732195&rft_id=info:doi/10.1007/978-3-031-73220-1_22&rft_dat=%3Cspringer%3Espringer_books_10_1007_978_3_031_73220_1_22%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783031732201&rft.eisbn_list=3031732200&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true