MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections
3D Gaussian Splatting showcases notable advancements in photo-realistic and real-time novel view synthesis. However, it faces challenges in modeling mirror reflections, which exhibit substantial appearance variations from different viewpoints. To tackle this problem, we present MirrorGaussian, the f...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 393 |
---|---|
container_issue | |
container_start_page | 377 |
container_title | |
container_volume | |
creator | Liu, Jiayue Tang, Xiao Cheng, Freeman Yang, Roy Li, Zhihao Liu, Jianzhuang Huang, Yi Lin, Jiaqi Liu, Shiyong Wu, Xiaofei Xu, Songcen Yuan, Chun |
description | 3D Gaussian Splatting showcases notable advancements in photo-realistic and real-time novel view synthesis. However, it faces challenges in modeling mirror reflections, which exhibit substantial appearance variations from different viewpoints. To tackle this problem, we present MirrorGaussian, the first method for mirror scene reconstruction with real-time rendering based on 3D Gaussian Splatting. The key insight is grounded on the mirror symmetry between the real-world space and the virtual mirror space. We introduce an intuitive dual-rendering strategy that enables differentiable rasterization of both the real-world 3D Gaussians and the mirrored counterpart obtained by reflecting the former about the mirror plane. All 3D Gaussians are jointly optimized with the mirror plane in an end-to-end framework. MirrorGaussian achieves high-quality and real-time rendering in scenes with mirrors, empowering scene editing like adding new mirrors and objects. Comprehensive experiments on multiple datasets demonstrate that our approach significantly outperforms existing methods, achieving state-of-the-art results. Project page: https://mirror-gaussian.github.io/. |
doi_str_mv | 10.1007/978-3-031-73220-1_22 |
format | Book Chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_978_3_031_73220_1_22</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_978_3_031_73220_1_22</sourcerecordid><originalsourceid>FETCH-LOGICAL-p174t-a4d8c7571642e089666422dee56cf9d15eb5566846fd3d0e712767b0818b08700</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhc2fRFp6Axa5gGHGdjwxO1SgIBWQKlhb-XFQoEoqO70PZ-FkuE1hMzN6b95o9DF2iXCFAHRtKOeSg0ROUgjgaIU4YrMoyyjuNTxmCWpELqUyJ2xyMNDQKUtAguCGlDxnkxA-AUCQEQl7eW697_2i2IbQFt1NunLN2lVD232k8i7900Pa9P7ne-WqvguD344LY_Y_Eq0LdtYU6-Bmhz5l7w_3b_NHvnxdPM1vl3yDpAZeqDqvKCPUSjjIjdZxELVzma4aU2PmyizTOle6qWUNjlCQphJyzGMhgCkT492w8fET523Z91_BItgdLhu5WGkjALtHY3e44BcRRFlT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections</title><creator>Liu, Jiayue ; Tang, Xiao ; Cheng, Freeman ; Yang, Roy ; Li, Zhihao ; Liu, Jianzhuang ; Huang, Yi ; Lin, Jiaqi ; Liu, Shiyong ; Wu, Xiaofei ; Xu, Songcen ; Yuan, Chun</creator><contributor>Sattler, Torsten ; Leonardis, Aleš ; Ricci, Elisa ; Varol, Gül ; Roth, Stefan ; Russakovsky, Olga</contributor><creatorcontrib>Liu, Jiayue ; Tang, Xiao ; Cheng, Freeman ; Yang, Roy ; Li, Zhihao ; Liu, Jianzhuang ; Huang, Yi ; Lin, Jiaqi ; Liu, Shiyong ; Wu, Xiaofei ; Xu, Songcen ; Yuan, Chun ; Sattler, Torsten ; Leonardis, Aleš ; Ricci, Elisa ; Varol, Gül ; Roth, Stefan ; Russakovsky, Olga</creatorcontrib><description>3D Gaussian Splatting showcases notable advancements in photo-realistic and real-time novel view synthesis. However, it faces challenges in modeling mirror reflections, which exhibit substantial appearance variations from different viewpoints. To tackle this problem, we present MirrorGaussian, the first method for mirror scene reconstruction with real-time rendering based on 3D Gaussian Splatting. The key insight is grounded on the mirror symmetry between the real-world space and the virtual mirror space. We introduce an intuitive dual-rendering strategy that enables differentiable rasterization of both the real-world 3D Gaussians and the mirrored counterpart obtained by reflecting the former about the mirror plane. All 3D Gaussians are jointly optimized with the mirror plane in an end-to-end framework. MirrorGaussian achieves high-quality and real-time rendering in scenes with mirrors, empowering scene editing like adding new mirrors and objects. Comprehensive experiments on multiple datasets demonstrate that our approach significantly outperforms existing methods, achieving state-of-the-art results. Project page: https://mirror-gaussian.github.io/.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3031732197</identifier><identifier>ISBN: 9783031732195</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783031732201</identifier><identifier>EISBN: 3031732200</identifier><identifier>DOI: 10.1007/978-3-031-73220-1_22</identifier><language>eng</language><publisher>Cham: Springer Nature Switzerland</publisher><subject>3D Gaussian Splatting ; Mirror Reflections ; Novel View Synthesis ; Real-Time Rendering</subject><ispartof>Computer Vision – ECCV 2024, 2024, p.377-393</ispartof><rights>The Author(s), under exclusive license to Springer Nature Switzerland AG 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,777</link.rule.ids></links><search><contributor>Sattler, Torsten</contributor><contributor>Leonardis, Aleš</contributor><contributor>Ricci, Elisa</contributor><contributor>Varol, Gül</contributor><contributor>Roth, Stefan</contributor><contributor>Russakovsky, Olga</contributor><creatorcontrib>Liu, Jiayue</creatorcontrib><creatorcontrib>Tang, Xiao</creatorcontrib><creatorcontrib>Cheng, Freeman</creatorcontrib><creatorcontrib>Yang, Roy</creatorcontrib><creatorcontrib>Li, Zhihao</creatorcontrib><creatorcontrib>Liu, Jianzhuang</creatorcontrib><creatorcontrib>Huang, Yi</creatorcontrib><creatorcontrib>Lin, Jiaqi</creatorcontrib><creatorcontrib>Liu, Shiyong</creatorcontrib><creatorcontrib>Wu, Xiaofei</creatorcontrib><creatorcontrib>Xu, Songcen</creatorcontrib><creatorcontrib>Yuan, Chun</creatorcontrib><title>MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections</title><title>Computer Vision – ECCV 2024</title><description>3D Gaussian Splatting showcases notable advancements in photo-realistic and real-time novel view synthesis. However, it faces challenges in modeling mirror reflections, which exhibit substantial appearance variations from different viewpoints. To tackle this problem, we present MirrorGaussian, the first method for mirror scene reconstruction with real-time rendering based on 3D Gaussian Splatting. The key insight is grounded on the mirror symmetry between the real-world space and the virtual mirror space. We introduce an intuitive dual-rendering strategy that enables differentiable rasterization of both the real-world 3D Gaussians and the mirrored counterpart obtained by reflecting the former about the mirror plane. All 3D Gaussians are jointly optimized with the mirror plane in an end-to-end framework. MirrorGaussian achieves high-quality and real-time rendering in scenes with mirrors, empowering scene editing like adding new mirrors and objects. Comprehensive experiments on multiple datasets demonstrate that our approach significantly outperforms existing methods, achieving state-of-the-art results. Project page: https://mirror-gaussian.github.io/.</description><subject>3D Gaussian Splatting</subject><subject>Mirror Reflections</subject><subject>Novel View Synthesis</subject><subject>Real-Time Rendering</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3031732197</isbn><isbn>9783031732195</isbn><isbn>9783031732201</isbn><isbn>3031732200</isbn><fulltext>false</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2024</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNo9kE1OwzAQhc2fRFp6Axa5gGHGdjwxO1SgIBWQKlhb-XFQoEoqO70PZ-FkuE1hMzN6b95o9DF2iXCFAHRtKOeSg0ROUgjgaIU4YrMoyyjuNTxmCWpELqUyJ2xyMNDQKUtAguCGlDxnkxA-AUCQEQl7eW697_2i2IbQFt1NunLN2lVD232k8i7900Pa9P7ne-WqvguD344LY_Y_Eq0LdtYU6-Bmhz5l7w_3b_NHvnxdPM1vl3yDpAZeqDqvKCPUSjjIjdZxELVzma4aU2PmyizTOle6qWUNjlCQphJyzGMhgCkT492w8fET523Z91_BItgdLhu5WGkjALtHY3e44BcRRFlT</recordid><startdate>20241103</startdate><enddate>20241103</enddate><creator>Liu, Jiayue</creator><creator>Tang, Xiao</creator><creator>Cheng, Freeman</creator><creator>Yang, Roy</creator><creator>Li, Zhihao</creator><creator>Liu, Jianzhuang</creator><creator>Huang, Yi</creator><creator>Lin, Jiaqi</creator><creator>Liu, Shiyong</creator><creator>Wu, Xiaofei</creator><creator>Xu, Songcen</creator><creator>Yuan, Chun</creator><general>Springer Nature Switzerland</general><scope/></search><sort><creationdate>20241103</creationdate><title>MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections</title><author>Liu, Jiayue ; Tang, Xiao ; Cheng, Freeman ; Yang, Roy ; Li, Zhihao ; Liu, Jianzhuang ; Huang, Yi ; Lin, Jiaqi ; Liu, Shiyong ; Wu, Xiaofei ; Xu, Songcen ; Yuan, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p174t-a4d8c7571642e089666422dee56cf9d15eb5566846fd3d0e712767b0818b08700</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D Gaussian Splatting</topic><topic>Mirror Reflections</topic><topic>Novel View Synthesis</topic><topic>Real-Time Rendering</topic><toplevel>peer_reviewed</toplevel><creatorcontrib>Liu, Jiayue</creatorcontrib><creatorcontrib>Tang, Xiao</creatorcontrib><creatorcontrib>Cheng, Freeman</creatorcontrib><creatorcontrib>Yang, Roy</creatorcontrib><creatorcontrib>Li, Zhihao</creatorcontrib><creatorcontrib>Liu, Jianzhuang</creatorcontrib><creatorcontrib>Huang, Yi</creatorcontrib><creatorcontrib>Lin, Jiaqi</creatorcontrib><creatorcontrib>Liu, Shiyong</creatorcontrib><creatorcontrib>Wu, Xiaofei</creatorcontrib><creatorcontrib>Xu, Songcen</creatorcontrib><creatorcontrib>Yuan, Chun</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>no_fulltext</fulltext></delivery><addata><au>Liu, Jiayue</au><au>Tang, Xiao</au><au>Cheng, Freeman</au><au>Yang, Roy</au><au>Li, Zhihao</au><au>Liu, Jianzhuang</au><au>Huang, Yi</au><au>Lin, Jiaqi</au><au>Liu, Shiyong</au><au>Wu, Xiaofei</au><au>Xu, Songcen</au><au>Yuan, Chun</au><au>Sattler, Torsten</au><au>Leonardis, Aleš</au><au>Ricci, Elisa</au><au>Varol, Gül</au><au>Roth, Stefan</au><au>Russakovsky, Olga</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections</atitle><btitle>Computer Vision – ECCV 2024</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2024-11-03</date><risdate>2024</risdate><spage>377</spage><epage>393</epage><pages>377-393</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3031732197</isbn><isbn>9783031732195</isbn><eisbn>9783031732201</eisbn><eisbn>3031732200</eisbn><abstract>3D Gaussian Splatting showcases notable advancements in photo-realistic and real-time novel view synthesis. However, it faces challenges in modeling mirror reflections, which exhibit substantial appearance variations from different viewpoints. To tackle this problem, we present MirrorGaussian, the first method for mirror scene reconstruction with real-time rendering based on 3D Gaussian Splatting. The key insight is grounded on the mirror symmetry between the real-world space and the virtual mirror space. We introduce an intuitive dual-rendering strategy that enables differentiable rasterization of both the real-world 3D Gaussians and the mirrored counterpart obtained by reflecting the former about the mirror plane. All 3D Gaussians are jointly optimized with the mirror plane in an end-to-end framework. MirrorGaussian achieves high-quality and real-time rendering in scenes with mirrors, empowering scene editing like adding new mirrors and objects. Comprehensive experiments on multiple datasets demonstrate that our approach significantly outperforms existing methods, achieving state-of-the-art results. Project page: https://mirror-gaussian.github.io/.</abstract><cop>Cham</cop><pub>Springer Nature Switzerland</pub><doi>10.1007/978-3-031-73220-1_22</doi><tpages>17</tpages></addata></record> |
fulltext | no_fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computer Vision – ECCV 2024, 2024, p.377-393 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_springer_books_10_1007_978_3_031_73220_1_22 |
source | |
subjects | 3D Gaussian Splatting Mirror Reflections Novel View Synthesis Real-Time Rendering |
title | MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=MirrorGaussian:%20Reflecting%203D%20Gaussians%20for%C2%A0Reconstructing%20Mirror%20Reflections&rft.btitle=Computer%20Vision%20%E2%80%93%20ECCV%202024&rft.au=Liu,%20Jiayue&rft.date=2024-11-03&rft.spage=377&rft.epage=393&rft.pages=377-393&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3031732197&rft.isbn_list=9783031732195&rft_id=info:doi/10.1007/978-3-031-73220-1_22&rft_dat=%3Cspringer%3Espringer_books_10_1007_978_3_031_73220_1_22%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783031732201&rft.eisbn_list=3031732200&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |