Removing Rows and Columns of Tokens in Vision Transformer Enables Faster Dense Prediction Without Retraining

In recent years, vision transformers based on self-attention mechanisms have demonstrated remarkable abilities in various tasks such as natural language processing, computer vision (CV), and multimodal applications. However, due to the high computational costs and the structural nature of images, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Su, Diwei, Fei, Cheng, Luo, Jianxu
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 341
container_issue
container_start_page 325
container_title
container_volume 15130
creator Su, Diwei
Fei, Cheng
Luo, Jianxu
description In recent years, vision transformers based on self-attention mechanisms have demonstrated remarkable abilities in various tasks such as natural language processing, computer vision (CV), and multimodal applications. However, due to the high computational costs and the structural nature of images, the application of transformers to CV tasks faces challenges, particularly when handling ultra-high-resolution images. Recently, several token reduction methods have been proposed to improve the computational efficiency of transformers by reducing the number of tokens without the need for retraining. These methods primarily involve fusion based on matching or clustering. The former exhibits faster speed but suffers more accuracy loss compared to the latter. In this work, we propose a simple matching-based fusion method called Token Adapter, which achieves comparable accuracy to the clustering-based fusion method with faster speed and demonstrates higher potential in terms of robustness. Our method was applied to Segmenter, MaskDINO and SWAG, exhibiting promising performance on four tasks, including semantic segmentation, instance segmentation, panoptic segmentation, and image classification. Specifically, our method can be applied to Segmenter on ADE20k, providing 41% frames per second (FPS) acceleration while maintaining full performance without retraining or fine-tuning off-the-shelf weights. Our code will be released at https://github.com/MilknoCandy/Token-Adapter.
doi_str_mv 10.1007/978-3-031-73220-1_19
format Book Chapter
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_31752202_298_410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC31752202_298_410</sourcerecordid><originalsourceid>FETCH-LOGICAL-p174t-bfe44b1481af3b037eccfd75fbe411aa81ad2d69c76427230123af1ed7a26fd23</originalsourceid><addsrcrecordid>eNotkN1OAjEQhetvBOQNvOgLVDudsmUvDYKakGgI6mXT3W1lZWlxu-jrW8Cr6ZzOmdN-hNwAvwXO1V2uxgwZR2AKheAMNOQnZJhkTOJBg1PSgwyAIcr8jPT_LyBX56THkQuWK4mXpA8yU2OVCzm6IsMYvzjniJgJnvVIs7Cb8FP7T7oIv5EaX9FJaHYbH2lwdBnWNp1qT9_rWAdPl63x0YV2Y1s69aZobKQzE7vUPqRJS19bW9Vlt5_9qLtV2HV0YbvW1D5lXJMLZ5poh_91QN5m0-Xkic1fHp8n93O2BSU7VjgrZQFyDMZhwVHZsnSVGrnCSgBjkl6JKstLlUmhBHIQaBzYShmRuUrggIjj3rhtU6xtdRHCOmrgeg9XJ4oadcKlDyD1Hm4yjY6mbRu-dzZ22u5dpfXp-U25Mtv0y6gT41HyCC3ysZbA8Q9jcXnU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC31752202_298_410</pqid></control><display><type>book_chapter</type><title>Removing Rows and Columns of Tokens in Vision Transformer Enables Faster Dense Prediction Without Retraining</title><source>Springer Books</source><creator>Su, Diwei ; Fei, Cheng ; Luo, Jianxu</creator><contributor>Russakovsky, Olga ; Ricci, Elisa ; Sattler, Torsten ; Leonardis, Ales ; Roth, Stefan ; Varol, Gül</contributor><creatorcontrib>Su, Diwei ; Fei, Cheng ; Luo, Jianxu ; Russakovsky, Olga ; Ricci, Elisa ; Sattler, Torsten ; Leonardis, Ales ; Roth, Stefan ; Varol, Gül</creatorcontrib><description>In recent years, vision transformers based on self-attention mechanisms have demonstrated remarkable abilities in various tasks such as natural language processing, computer vision (CV), and multimodal applications. However, due to the high computational costs and the structural nature of images, the application of transformers to CV tasks faces challenges, particularly when handling ultra-high-resolution images. Recently, several token reduction methods have been proposed to improve the computational efficiency of transformers by reducing the number of tokens without the need for retraining. These methods primarily involve fusion based on matching or clustering. The former exhibits faster speed but suffers more accuracy loss compared to the latter. In this work, we propose a simple matching-based fusion method called Token Adapter, which achieves comparable accuracy to the clustering-based fusion method with faster speed and demonstrates higher potential in terms of robustness. Our method was applied to Segmenter, MaskDINO and SWAG, exhibiting promising performance on four tasks, including semantic segmentation, instance segmentation, panoptic segmentation, and image classification. Specifically, our method can be applied to Segmenter on ADE20k, providing 41% frames per second (FPS) acceleration while maintaining full performance without retraining or fine-tuning off-the-shelf weights. Our code will be released at https://github.com/MilknoCandy/Token-Adapter.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3031732197</identifier><identifier>ISBN: 9783031732195</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783031732201</identifier><identifier>EISBN: 3031732200</identifier><identifier>DOI: 10.1007/978-3-031-73220-1_19</identifier><identifier>OCLC: 1467879245</identifier><identifier>LCCallNum: TA1501-1820</identifier><language>eng</language><publisher>Switzerland: Springer</publisher><subject>Dense prediction ; Efficient transformer ; Token reduction ; Vision transformer</subject><ispartof>Computer Vision - ECCV 2024, 2024, Vol.15130, p.325-341</ispartof><rights>The Author(s), under exclusive license to Springer Nature Switzerland AG 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0890-5256 ; 0000-0002-2503-4202 ; 0009-0008-4922-9259</orcidid><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/31752202-l.jpg</thumbnail><link.rule.ids>775,776,780,789,27902</link.rule.ids></links><search><contributor>Russakovsky, Olga</contributor><contributor>Ricci, Elisa</contributor><contributor>Sattler, Torsten</contributor><contributor>Leonardis, Ales</contributor><contributor>Roth, Stefan</contributor><contributor>Varol, Gül</contributor><creatorcontrib>Su, Diwei</creatorcontrib><creatorcontrib>Fei, Cheng</creatorcontrib><creatorcontrib>Luo, Jianxu</creatorcontrib><title>Removing Rows and Columns of Tokens in Vision Transformer Enables Faster Dense Prediction Without Retraining</title><title>Computer Vision - ECCV 2024</title><description>In recent years, vision transformers based on self-attention mechanisms have demonstrated remarkable abilities in various tasks such as natural language processing, computer vision (CV), and multimodal applications. However, due to the high computational costs and the structural nature of images, the application of transformers to CV tasks faces challenges, particularly when handling ultra-high-resolution images. Recently, several token reduction methods have been proposed to improve the computational efficiency of transformers by reducing the number of tokens without the need for retraining. These methods primarily involve fusion based on matching or clustering. The former exhibits faster speed but suffers more accuracy loss compared to the latter. In this work, we propose a simple matching-based fusion method called Token Adapter, which achieves comparable accuracy to the clustering-based fusion method with faster speed and demonstrates higher potential in terms of robustness. Our method was applied to Segmenter, MaskDINO and SWAG, exhibiting promising performance on four tasks, including semantic segmentation, instance segmentation, panoptic segmentation, and image classification. Specifically, our method can be applied to Segmenter on ADE20k, providing 41% frames per second (FPS) acceleration while maintaining full performance without retraining or fine-tuning off-the-shelf weights. Our code will be released at https://github.com/MilknoCandy/Token-Adapter.</description><subject>Dense prediction</subject><subject>Efficient transformer</subject><subject>Token reduction</subject><subject>Vision transformer</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3031732197</isbn><isbn>9783031732195</isbn><isbn>9783031732201</isbn><isbn>3031732200</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2024</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkN1OAjEQhetvBOQNvOgLVDudsmUvDYKakGgI6mXT3W1lZWlxu-jrW8Cr6ZzOmdN-hNwAvwXO1V2uxgwZR2AKheAMNOQnZJhkTOJBg1PSgwyAIcr8jPT_LyBX56THkQuWK4mXpA8yU2OVCzm6IsMYvzjniJgJnvVIs7Cb8FP7T7oIv5EaX9FJaHYbH2lwdBnWNp1qT9_rWAdPl63x0YV2Y1s69aZobKQzE7vUPqRJS19bW9Vlt5_9qLtV2HV0YbvW1D5lXJMLZ5poh_91QN5m0-Xkic1fHp8n93O2BSU7VjgrZQFyDMZhwVHZsnSVGrnCSgBjkl6JKstLlUmhBHIQaBzYShmRuUrggIjj3rhtU6xtdRHCOmrgeg9XJ4oadcKlDyD1Hm4yjY6mbRu-dzZ22u5dpfXp-U25Mtv0y6gT41HyCC3ysZbA8Q9jcXnU</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Su, Diwei</creator><creator>Fei, Cheng</creator><creator>Luo, Jianxu</creator><general>Springer</general><general>Springer Nature Switzerland</general><scope>FFUUA</scope><orcidid>https://orcid.org/0000-0002-0890-5256</orcidid><orcidid>https://orcid.org/0000-0002-2503-4202</orcidid><orcidid>https://orcid.org/0009-0008-4922-9259</orcidid></search><sort><creationdate>2024</creationdate><title>Removing Rows and Columns of Tokens in Vision Transformer Enables Faster Dense Prediction Without Retraining</title><author>Su, Diwei ; Fei, Cheng ; Luo, Jianxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p174t-bfe44b1481af3b037eccfd75fbe411aa81ad2d69c76427230123af1ed7a26fd23</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dense prediction</topic><topic>Efficient transformer</topic><topic>Token reduction</topic><topic>Vision transformer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Diwei</creatorcontrib><creatorcontrib>Fei, Cheng</creatorcontrib><creatorcontrib>Luo, Jianxu</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Diwei</au><au>Fei, Cheng</au><au>Luo, Jianxu</au><au>Russakovsky, Olga</au><au>Ricci, Elisa</au><au>Sattler, Torsten</au><au>Leonardis, Ales</au><au>Roth, Stefan</au><au>Varol, Gül</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Removing Rows and Columns of Tokens in Vision Transformer Enables Faster Dense Prediction Without Retraining</atitle><btitle>Computer Vision - ECCV 2024</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2024</date><risdate>2024</risdate><volume>15130</volume><spage>325</spage><epage>341</epage><pages>325-341</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3031732197</isbn><isbn>9783031732195</isbn><eisbn>9783031732201</eisbn><eisbn>3031732200</eisbn><abstract>In recent years, vision transformers based on self-attention mechanisms have demonstrated remarkable abilities in various tasks such as natural language processing, computer vision (CV), and multimodal applications. However, due to the high computational costs and the structural nature of images, the application of transformers to CV tasks faces challenges, particularly when handling ultra-high-resolution images. Recently, several token reduction methods have been proposed to improve the computational efficiency of transformers by reducing the number of tokens without the need for retraining. These methods primarily involve fusion based on matching or clustering. The former exhibits faster speed but suffers more accuracy loss compared to the latter. In this work, we propose a simple matching-based fusion method called Token Adapter, which achieves comparable accuracy to the clustering-based fusion method with faster speed and demonstrates higher potential in terms of robustness. Our method was applied to Segmenter, MaskDINO and SWAG, exhibiting promising performance on four tasks, including semantic segmentation, instance segmentation, panoptic segmentation, and image classification. Specifically, our method can be applied to Segmenter on ADE20k, providing 41% frames per second (FPS) acceleration while maintaining full performance without retraining or fine-tuning off-the-shelf weights. Our code will be released at https://github.com/MilknoCandy/Token-Adapter.</abstract><cop>Switzerland</cop><pub>Springer</pub><doi>10.1007/978-3-031-73220-1_19</doi><oclcid>1467879245</oclcid><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0890-5256</orcidid><orcidid>https://orcid.org/0000-0002-2503-4202</orcidid><orcidid>https://orcid.org/0009-0008-4922-9259</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer Vision - ECCV 2024, 2024, Vol.15130, p.325-341
issn 0302-9743
1611-3349
language eng
recordid cdi_proquest_ebookcentralchapters_31752202_298_410
source Springer Books
subjects Dense prediction
Efficient transformer
Token reduction
Vision transformer
title Removing Rows and Columns of Tokens in Vision Transformer Enables Faster Dense Prediction Without Retraining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Removing%20Rows%20and%20Columns%20of%20Tokens%20in%20Vision%20Transformer%20Enables%20Faster%20Dense%20Prediction%20Without%20Retraining&rft.btitle=Computer%20Vision%20-%20ECCV%202024&rft.au=Su,%20Diwei&rft.date=2024&rft.volume=15130&rft.spage=325&rft.epage=341&rft.pages=325-341&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3031732197&rft.isbn_list=9783031732195&rft_id=info:doi/10.1007/978-3-031-73220-1_19&rft_dat=%3Cproquest_sprin%3EEBC31752202_298_410%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783031732201&rft.eisbn_list=3031732200&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC31752202_298_410&rft_id=info:pmid/&rfr_iscdi=true