Bi-TTA: Bidirectional Test-Time Adapter for Remote Physiological Measurement

Remote photoplethysmography (rPPG) is gaining prominence for its non-invasive approach to monitoring physiological signals using only cameras. Despite its promise, the adaptability of rPPG models to new, unseen domains is hindered due to the environmental sensitivity of physiological signals. To add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Haodong, Lu, Hao, Chen, Ying-Cong
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 374
container_issue
container_start_page 356
container_title
container_volume 15069
creator Li, Haodong
Lu, Hao
Chen, Ying-Cong
description Remote photoplethysmography (rPPG) is gaining prominence for its non-invasive approach to monitoring physiological signals using only cameras. Despite its promise, the adaptability of rPPG models to new, unseen domains is hindered due to the environmental sensitivity of physiological signals. To address this issue, we pioneer the Test-Time Adaptation (TTA) in rPPG, enabling the adaptation of pre-trained models to the target domain during inference, sidestepping the need for annotations or source data due to privacy considerations. Particularly, utilizing only the user’s face video stream as the accessible target domain data, the rPPG model is adjusted by tuning on each single instance it encounters. However, 1) TTA algorithms are designed predominantly for classification tasks, ill-suited in regression tasks such as rPPG due to inadequate supervision. 2) Tuning pre-trained models in a single-instance manner introduces variability and instability, posing challenges to effectively filtering domain-relevant from domain-irrelevant features while simultaneously preserving the learned information. To overcome these challenges, we present Bi-TTA, a novel expert knowledge-based Bidirectional Test-Time Adapter framework. Specifically, leveraging two expert-knowledge priors for providing self-supervision, our Bi-TTA primarily comprises two modules: a prospective adaptation (PA) module using sharpness-aware minimization to eliminate domain-irrelevant noise, enhancing the stability and efficacy during the adaptation process, and a retrospective stabilization (RS) module to dynamically reinforce crucial learned model parameters, averting performance degradation caused by overfitting or catastrophic forgetting. To this end, we established a large-scale benchmark for rPPG tasks under TTA protocol, promoting advancements in both the rPPG and TTA fields. The experimental results demonstrate the significant superiority of our approach over the state-of-the-art (SoTA).
doi_str_mv 10.1007/978-3-031-73247-8_21
format Book Chapter
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_31749069_313_441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC31749069_313_441</sourcerecordid><originalsourceid>FETCH-LOGICAL-p174t-bb72f95d0b688eb40ff8cc419a2492da6d60ffb9b2d86a02a75a9a13b8ba238d0</originalsourceid><addsrcrecordid>eNo1kMtOwzAQRc1TtKV_wCI_YPArfrBrK15SEQiFtWUnTmuR1sFOF_w9bgurGd25dzRzALjB6BYjJO6UkJBCRDEUlDABpSb4BIxpVg4COQUjzDGGlDJ1BqbZ_z_j-ByMEEUEKsHoJRhjxoUU2UCuwDQlb1EpCGIlVSOwnHtYVbP7Yu4bH109-LA1XVG5NMDKb1wxa0w_uFi0IRYfbhMGV7yvf5IPXVj5OltfnUm76DZuO1yDi9Z0yU3_6gR8Pj5Ui2e4fHt6WcyWsMeCDdBaQVpVNshyKZ1lqG1lXTOsDGGKNIY3PEtWWdJIbhAxojTKYGqlNYTKBk0AOe5NffTblYvahvCVNEZ6D09nGJrqjEMfWOk9vBwqj6E-hu9d_k-7farOd0fT1evDm0lnhkwhrnJDNWMY_QJj5m3J</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC31749069_313_441</pqid></control><display><type>book_chapter</type><title>Bi-TTA: Bidirectional Test-Time Adapter for Remote Physiological Measurement</title><creator>Li, Haodong ; Lu, Hao ; Chen, Ying-Cong</creator><contributor>Russakovsky, Olga ; Ricci, Elisa ; Sattler, Torsten ; Leonardis, Ales ; Roth, Stefan ; Varol, Gül ; Sattler, Torsten ; Leonardis, Aleš ; Ricci, Elisa ; Varol, Gül ; Roth, Stefan ; Russakovsky, Olga</contributor><creatorcontrib>Li, Haodong ; Lu, Hao ; Chen, Ying-Cong ; Russakovsky, Olga ; Ricci, Elisa ; Sattler, Torsten ; Leonardis, Ales ; Roth, Stefan ; Varol, Gül ; Sattler, Torsten ; Leonardis, Aleš ; Ricci, Elisa ; Varol, Gül ; Roth, Stefan ; Russakovsky, Olga</creatorcontrib><description>Remote photoplethysmography (rPPG) is gaining prominence for its non-invasive approach to monitoring physiological signals using only cameras. Despite its promise, the adaptability of rPPG models to new, unseen domains is hindered due to the environmental sensitivity of physiological signals. To address this issue, we pioneer the Test-Time Adaptation (TTA) in rPPG, enabling the adaptation of pre-trained models to the target domain during inference, sidestepping the need for annotations or source data due to privacy considerations. Particularly, utilizing only the user’s face video stream as the accessible target domain data, the rPPG model is adjusted by tuning on each single instance it encounters. However, 1) TTA algorithms are designed predominantly for classification tasks, ill-suited in regression tasks such as rPPG due to inadequate supervision. 2) Tuning pre-trained models in a single-instance manner introduces variability and instability, posing challenges to effectively filtering domain-relevant from domain-irrelevant features while simultaneously preserving the learned information. To overcome these challenges, we present Bi-TTA, a novel expert knowledge-based Bidirectional Test-Time Adapter framework. Specifically, leveraging two expert-knowledge priors for providing self-supervision, our Bi-TTA primarily comprises two modules: a prospective adaptation (PA) module using sharpness-aware minimization to eliminate domain-irrelevant noise, enhancing the stability and efficacy during the adaptation process, and a retrospective stabilization (RS) module to dynamically reinforce crucial learned model parameters, averting performance degradation caused by overfitting or catastrophic forgetting. To this end, we established a large-scale benchmark for rPPG tasks under TTA protocol, promoting advancements in both the rPPG and TTA fields. The experimental results demonstrate the significant superiority of our approach over the state-of-the-art (SoTA).</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783031732461</identifier><identifier>ISBN: 3031732464</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3031732472</identifier><identifier>EISBN: 9783031732478</identifier><identifier>DOI: 10.1007/978-3-031-73247-8_21</identifier><identifier>OCLC: 1467877832</identifier><identifier>LCCallNum: TA1501-1820</identifier><language>eng</language><publisher>Switzerland: Springer</publisher><subject>Bidirectional Test-Time Adaptation ; Expert Knowledge-based Priors ; Remote Photoplethysmography</subject><ispartof>Computer Vision - ECCV 2024, 2024, Vol.15069, p.356-374</ispartof><rights>The Author(s), under exclusive license to Springer Nature Switzerland AG 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/31749069-l.jpg</thumbnail><link.rule.ids>775,776</link.rule.ids></links><search><contributor>Russakovsky, Olga</contributor><contributor>Ricci, Elisa</contributor><contributor>Sattler, Torsten</contributor><contributor>Leonardis, Ales</contributor><contributor>Roth, Stefan</contributor><contributor>Varol, Gül</contributor><contributor>Sattler, Torsten</contributor><contributor>Leonardis, Aleš</contributor><contributor>Ricci, Elisa</contributor><contributor>Varol, Gül</contributor><contributor>Roth, Stefan</contributor><contributor>Russakovsky, Olga</contributor><creatorcontrib>Li, Haodong</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Chen, Ying-Cong</creatorcontrib><title>Bi-TTA: Bidirectional Test-Time Adapter for Remote Physiological Measurement</title><title>Computer Vision - ECCV 2024</title><description>Remote photoplethysmography (rPPG) is gaining prominence for its non-invasive approach to monitoring physiological signals using only cameras. Despite its promise, the adaptability of rPPG models to new, unseen domains is hindered due to the environmental sensitivity of physiological signals. To address this issue, we pioneer the Test-Time Adaptation (TTA) in rPPG, enabling the adaptation of pre-trained models to the target domain during inference, sidestepping the need for annotations or source data due to privacy considerations. Particularly, utilizing only the user’s face video stream as the accessible target domain data, the rPPG model is adjusted by tuning on each single instance it encounters. However, 1) TTA algorithms are designed predominantly for classification tasks, ill-suited in regression tasks such as rPPG due to inadequate supervision. 2) Tuning pre-trained models in a single-instance manner introduces variability and instability, posing challenges to effectively filtering domain-relevant from domain-irrelevant features while simultaneously preserving the learned information. To overcome these challenges, we present Bi-TTA, a novel expert knowledge-based Bidirectional Test-Time Adapter framework. Specifically, leveraging two expert-knowledge priors for providing self-supervision, our Bi-TTA primarily comprises two modules: a prospective adaptation (PA) module using sharpness-aware minimization to eliminate domain-irrelevant noise, enhancing the stability and efficacy during the adaptation process, and a retrospective stabilization (RS) module to dynamically reinforce crucial learned model parameters, averting performance degradation caused by overfitting or catastrophic forgetting. To this end, we established a large-scale benchmark for rPPG tasks under TTA protocol, promoting advancements in both the rPPG and TTA fields. The experimental results demonstrate the significant superiority of our approach over the state-of-the-art (SoTA).</description><subject>Bidirectional Test-Time Adaptation</subject><subject>Expert Knowledge-based Priors</subject><subject>Remote Photoplethysmography</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783031732461</isbn><isbn>3031732464</isbn><isbn>3031732472</isbn><isbn>9783031732478</isbn><fulltext>false</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2024</creationdate><recordtype>book_chapter</recordtype><recordid>eNo1kMtOwzAQRc1TtKV_wCI_YPArfrBrK15SEQiFtWUnTmuR1sFOF_w9bgurGd25dzRzALjB6BYjJO6UkJBCRDEUlDABpSb4BIxpVg4COQUjzDGGlDJ1BqbZ_z_j-ByMEEUEKsHoJRhjxoUU2UCuwDQlb1EpCGIlVSOwnHtYVbP7Yu4bH109-LA1XVG5NMDKb1wxa0w_uFi0IRYfbhMGV7yvf5IPXVj5OltfnUm76DZuO1yDi9Z0yU3_6gR8Pj5Ui2e4fHt6WcyWsMeCDdBaQVpVNshyKZ1lqG1lXTOsDGGKNIY3PEtWWdJIbhAxojTKYGqlNYTKBk0AOe5NffTblYvahvCVNEZ6D09nGJrqjEMfWOk9vBwqj6E-hu9d_k-7farOd0fT1evDm0lnhkwhrnJDNWMY_QJj5m3J</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Haodong</creator><creator>Lu, Hao</creator><creator>Chen, Ying-Cong</creator><general>Springer</general><general>Springer Nature Switzerland</general><scope>FFUUA</scope></search><sort><creationdate>2024</creationdate><title>Bi-TTA: Bidirectional Test-Time Adapter for Remote Physiological Measurement</title><author>Li, Haodong ; Lu, Hao ; Chen, Ying-Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p174t-bb72f95d0b688eb40ff8cc419a2492da6d60ffb9b2d86a02a75a9a13b8ba238d0</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bidirectional Test-Time Adaptation</topic><topic>Expert Knowledge-based Priors</topic><topic>Remote Photoplethysmography</topic><toplevel>peer_reviewed</toplevel><creatorcontrib>Li, Haodong</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Chen, Ying-Cong</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>no_fulltext</fulltext></delivery><addata><au>Li, Haodong</au><au>Lu, Hao</au><au>Chen, Ying-Cong</au><au>Russakovsky, Olga</au><au>Ricci, Elisa</au><au>Sattler, Torsten</au><au>Leonardis, Ales</au><au>Roth, Stefan</au><au>Varol, Gül</au><au>Sattler, Torsten</au><au>Leonardis, Aleš</au><au>Ricci, Elisa</au><au>Varol, Gül</au><au>Roth, Stefan</au><au>Russakovsky, Olga</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Bi-TTA: Bidirectional Test-Time Adapter for Remote Physiological Measurement</atitle><btitle>Computer Vision - ECCV 2024</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2024</date><risdate>2024</risdate><volume>15069</volume><spage>356</spage><epage>374</epage><pages>356-374</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783031732461</isbn><isbn>3031732464</isbn><eisbn>3031732472</eisbn><eisbn>9783031732478</eisbn><abstract>Remote photoplethysmography (rPPG) is gaining prominence for its non-invasive approach to monitoring physiological signals using only cameras. Despite its promise, the adaptability of rPPG models to new, unseen domains is hindered due to the environmental sensitivity of physiological signals. To address this issue, we pioneer the Test-Time Adaptation (TTA) in rPPG, enabling the adaptation of pre-trained models to the target domain during inference, sidestepping the need for annotations or source data due to privacy considerations. Particularly, utilizing only the user’s face video stream as the accessible target domain data, the rPPG model is adjusted by tuning on each single instance it encounters. However, 1) TTA algorithms are designed predominantly for classification tasks, ill-suited in regression tasks such as rPPG due to inadequate supervision. 2) Tuning pre-trained models in a single-instance manner introduces variability and instability, posing challenges to effectively filtering domain-relevant from domain-irrelevant features while simultaneously preserving the learned information. To overcome these challenges, we present Bi-TTA, a novel expert knowledge-based Bidirectional Test-Time Adapter framework. Specifically, leveraging two expert-knowledge priors for providing self-supervision, our Bi-TTA primarily comprises two modules: a prospective adaptation (PA) module using sharpness-aware minimization to eliminate domain-irrelevant noise, enhancing the stability and efficacy during the adaptation process, and a retrospective stabilization (RS) module to dynamically reinforce crucial learned model parameters, averting performance degradation caused by overfitting or catastrophic forgetting. To this end, we established a large-scale benchmark for rPPG tasks under TTA protocol, promoting advancements in both the rPPG and TTA fields. The experimental results demonstrate the significant superiority of our approach over the state-of-the-art (SoTA).</abstract><cop>Switzerland</cop><pub>Springer</pub><doi>10.1007/978-3-031-73247-8_21</doi><oclcid>1467877832</oclcid><tpages>19</tpages></addata></record>
fulltext no_fulltext
identifier ISSN: 0302-9743
ispartof Computer Vision - ECCV 2024, 2024, Vol.15069, p.356-374
issn 0302-9743
1611-3349
language eng
recordid cdi_proquest_ebookcentralchapters_31749069_313_441
source
subjects Bidirectional Test-Time Adaptation
Expert Knowledge-based Priors
Remote Photoplethysmography
title Bi-TTA: Bidirectional Test-Time Adapter for Remote Physiological Measurement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Bi-TTA:%20Bidirectional%20Test-Time%20Adapter%20for%20Remote%20Physiological%20Measurement&rft.btitle=Computer%20Vision%20-%20ECCV%202024&rft.au=Li,%20Haodong&rft.date=2024&rft.volume=15069&rft.spage=356&rft.epage=374&rft.pages=356-374&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783031732461&rft.isbn_list=3031732464&rft_id=info:doi/10.1007/978-3-031-73247-8_21&rft_dat=%3Cproquest_sprin%3EEBC31749069_313_441%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3031732472&rft.eisbn_list=9783031732478&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC31749069_313_441&rft_id=info:pmid/&rfr_iscdi=true