Multiclass Classification of Dry Bean Grains Using Machine Learning Techniques

The bean (Phaseolus vulgaris) is a crucial crop for global food security; thus, grain quality plays a meaningful role in the supply chain. Traditional classification involves the manual evaluation of parameters such as length, width, weight, and inaccuracies. However, this manual approach presents c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Coronel-Reyes, Julian, Delgado-Vera, Carlota, Chavez-Urbina, Jenny, Sinche-Guzmán, Andrea
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue
container_start_page 16
container_title
container_volume 2276
creator Coronel-Reyes, Julian
Delgado-Vera, Carlota
Chavez-Urbina, Jenny
Sinche-Guzmán, Andrea
description The bean (Phaseolus vulgaris) is a crucial crop for global food security; thus, grain quality plays a meaningful role in the supply chain. Traditional classification involves the manual evaluation of parameters such as length, width, weight, and inaccuracies. However, this manual approach presents challenges in terms of efficiency and subjectivity, as it can be slow due to human errors. This study aims to identify bean grain varieties in terms of their shape by using a machine learning algorithm approach. A database of 3,820 grains from three types—INIAP-420 (1,320), INIAP-422 (1,200), and INIAP-425 (1,300)—was used, containing 7 morphological shape variables. For the analysis of these variables, classification models were created using Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and k-Nearest Neighbors (k-NN) with 10-fold cross-validation, and performance metrics were compared. Overall correct classification rates were determined to be 86.65%, 93.12%, 90.39%, and 87.58% for RF, SVM, MLP, and k-NN, respectively. The SVM classification model, which showed the highest accuracy results, classified the bean types INIAP-420, INIAP-422, and INIAP-425 with 97.72%, 98.33%, and 97.46%, respectively. Based on the achieved performance measurement values, it can be concluded that the study successfully classified bean grain varieties.
doi_str_mv 10.1007/978-3-031-75702-0_2
format Book Chapter
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_31741697_22_27</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC31741697_22_27</sourcerecordid><originalsourceid>FETCH-LOGICAL-p862-4eb26631f563896f8dc5ed19336f742ebe00c48c04085b15b3b2e823d03d2d8c3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhc2vaEtPwCYXMNie-CdLKFCQWnVT1pbjONQickKcLrgNZ-FkOOVnM6N5T2_09CF0Rck1JUTeFFJhwAQollwSholmR2ieVEjaQSLHaEKV4JgUIE_Q9M-g8vTfYMU5mtJccCZSUl6geYy-JDwdHDidoM163wzeNibGbDFOX3trBt-GrK2_Pu_7j-zOmZAte-NDzF6iD6_Z2tidDy5bOdOHUdg6uwv-fe_iJTqrTRPd_HfP0PbxYbt4wqvN8nlxu8KdEgznrmRCAK25AFWIWlWWu4oWAKKWOXOlI8TmypKcKF5SXkLJnGJQEahYpSzMEP15G7s-FXC9Ltv2LWpK9EhPJ04adAKiD6h0opcy8JPp-nasOmg3hqwLQ28auzPd4PqoE8ScikJqxjST8A2YaW3M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC31741697_22_27</pqid></control><display><type>book_chapter</type><title>Multiclass Classification of Dry Bean Grains Using Machine Learning Techniques</title><source>Springer Books</source><creator>Coronel-Reyes, Julian ; Delgado-Vera, Carlota ; Chavez-Urbina, Jenny ; Sinche-Guzmán, Andrea</creator><contributor>Moran-Castro, Cesar Ernesto ; Borodulina, Tamara ; Valencia-García, Rafael ; Del Cioppo-Morstadt, Javier ; Vera-Lucio, Néstor ; Moran-Castro, Cesar Ernesto ; Vera-Lucio, Néstor ; Valencia-García, Rafael ; Borodulina, Tamara ; Del Cioppo-Morstadt, Javier</contributor><creatorcontrib>Coronel-Reyes, Julian ; Delgado-Vera, Carlota ; Chavez-Urbina, Jenny ; Sinche-Guzmán, Andrea ; Moran-Castro, Cesar Ernesto ; Borodulina, Tamara ; Valencia-García, Rafael ; Del Cioppo-Morstadt, Javier ; Vera-Lucio, Néstor ; Moran-Castro, Cesar Ernesto ; Vera-Lucio, Néstor ; Valencia-García, Rafael ; Borodulina, Tamara ; Del Cioppo-Morstadt, Javier</creatorcontrib><description>The bean (Phaseolus vulgaris) is a crucial crop for global food security; thus, grain quality plays a meaningful role in the supply chain. Traditional classification involves the manual evaluation of parameters such as length, width, weight, and inaccuracies. However, this manual approach presents challenges in terms of efficiency and subjectivity, as it can be slow due to human errors. This study aims to identify bean grain varieties in terms of their shape by using a machine learning algorithm approach. A database of 3,820 grains from three types—INIAP-420 (1,320), INIAP-422 (1,200), and INIAP-425 (1,300)—was used, containing 7 morphological shape variables. For the analysis of these variables, classification models were created using Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and k-Nearest Neighbors (k-NN) with 10-fold cross-validation, and performance metrics were compared. Overall correct classification rates were determined to be 86.65%, 93.12%, 90.39%, and 87.58% for RF, SVM, MLP, and k-NN, respectively. The SVM classification model, which showed the highest accuracy results, classified the bean types INIAP-420, INIAP-422, and INIAP-425 with 97.72%, 98.33%, and 97.46%, respectively. Based on the achieved performance measurement values, it can be concluded that the study successfully classified bean grain varieties.</description><identifier>ISSN: 1865-0929</identifier><identifier>ISBN: 3031757017</identifier><identifier>ISBN: 9783031757013</identifier><identifier>EISSN: 1865-0937</identifier><identifier>EISBN: 9783031757020</identifier><identifier>EISBN: 3031757025</identifier><identifier>DOI: 10.1007/978-3-031-75702-0_2</identifier><identifier>OCLC: 1465267837</identifier><identifier>LCCallNum: QA76.758</identifier><language>eng</language><publisher>Switzerland: Springer</publisher><subject>Bean grains ; Confusion matrix ; Machine learning ; Metrics of performance</subject><ispartof>Technologies and Innovation, 2024, Vol.2276, p.16-27</ispartof><rights>The Author(s), under exclusive license to Springer Nature Switzerland AG 2025</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8527-6078 ; 0000-0001-8735-9275 ; 0000-0003-1480-0263 ; 0000-0002-7883-5388</orcidid><relation>Communications in Computer and Information Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/31741697-l.jpg</thumbnail><link.rule.ids>776,777,781,790,27906</link.rule.ids></links><search><contributor>Moran-Castro, Cesar Ernesto</contributor><contributor>Borodulina, Tamara</contributor><contributor>Valencia-García, Rafael</contributor><contributor>Del Cioppo-Morstadt, Javier</contributor><contributor>Vera-Lucio, Néstor</contributor><contributor>Moran-Castro, Cesar Ernesto</contributor><contributor>Vera-Lucio, Néstor</contributor><contributor>Valencia-García, Rafael</contributor><contributor>Borodulina, Tamara</contributor><contributor>Del Cioppo-Morstadt, Javier</contributor><creatorcontrib>Coronel-Reyes, Julian</creatorcontrib><creatorcontrib>Delgado-Vera, Carlota</creatorcontrib><creatorcontrib>Chavez-Urbina, Jenny</creatorcontrib><creatorcontrib>Sinche-Guzmán, Andrea</creatorcontrib><title>Multiclass Classification of Dry Bean Grains Using Machine Learning Techniques</title><title>Technologies and Innovation</title><description>The bean (Phaseolus vulgaris) is a crucial crop for global food security; thus, grain quality plays a meaningful role in the supply chain. Traditional classification involves the manual evaluation of parameters such as length, width, weight, and inaccuracies. However, this manual approach presents challenges in terms of efficiency and subjectivity, as it can be slow due to human errors. This study aims to identify bean grain varieties in terms of their shape by using a machine learning algorithm approach. A database of 3,820 grains from three types—INIAP-420 (1,320), INIAP-422 (1,200), and INIAP-425 (1,300)—was used, containing 7 morphological shape variables. For the analysis of these variables, classification models were created using Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and k-Nearest Neighbors (k-NN) with 10-fold cross-validation, and performance metrics were compared. Overall correct classification rates were determined to be 86.65%, 93.12%, 90.39%, and 87.58% for RF, SVM, MLP, and k-NN, respectively. The SVM classification model, which showed the highest accuracy results, classified the bean types INIAP-420, INIAP-422, and INIAP-425 with 97.72%, 98.33%, and 97.46%, respectively. Based on the achieved performance measurement values, it can be concluded that the study successfully classified bean grain varieties.</description><subject>Bean grains</subject><subject>Confusion matrix</subject><subject>Machine learning</subject><subject>Metrics of performance</subject><issn>1865-0929</issn><issn>1865-0937</issn><isbn>3031757017</isbn><isbn>9783031757013</isbn><isbn>9783031757020</isbn><isbn>3031757025</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2024</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9kE1OwzAQhc2vaEtPwCYXMNie-CdLKFCQWnVT1pbjONQickKcLrgNZ-FkOOVnM6N5T2_09CF0Rck1JUTeFFJhwAQollwSholmR2ieVEjaQSLHaEKV4JgUIE_Q9M-g8vTfYMU5mtJccCZSUl6geYy-JDwdHDidoM163wzeNibGbDFOX3trBt-GrK2_Pu_7j-zOmZAte-NDzF6iD6_Z2tidDy5bOdOHUdg6uwv-fe_iJTqrTRPd_HfP0PbxYbt4wqvN8nlxu8KdEgznrmRCAK25AFWIWlWWu4oWAKKWOXOlI8TmypKcKF5SXkLJnGJQEahYpSzMEP15G7s-FXC9Ltv2LWpK9EhPJ04adAKiD6h0opcy8JPp-nasOmg3hqwLQ28auzPd4PqoE8ScikJqxjST8A2YaW3M</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Coronel-Reyes, Julian</creator><creator>Delgado-Vera, Carlota</creator><creator>Chavez-Urbina, Jenny</creator><creator>Sinche-Guzmán, Andrea</creator><general>Springer</general><general>Springer Nature Switzerland</general><scope>FFUUA</scope><orcidid>https://orcid.org/0000-0002-8527-6078</orcidid><orcidid>https://orcid.org/0000-0001-8735-9275</orcidid><orcidid>https://orcid.org/0000-0003-1480-0263</orcidid><orcidid>https://orcid.org/0000-0002-7883-5388</orcidid></search><sort><creationdate>2024</creationdate><title>Multiclass Classification of Dry Bean Grains Using Machine Learning Techniques</title><author>Coronel-Reyes, Julian ; Delgado-Vera, Carlota ; Chavez-Urbina, Jenny ; Sinche-Guzmán, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p862-4eb26631f563896f8dc5ed19336f742ebe00c48c04085b15b3b2e823d03d2d8c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bean grains</topic><topic>Confusion matrix</topic><topic>Machine learning</topic><topic>Metrics of performance</topic><toplevel>online_resources</toplevel><creatorcontrib>Coronel-Reyes, Julian</creatorcontrib><creatorcontrib>Delgado-Vera, Carlota</creatorcontrib><creatorcontrib>Chavez-Urbina, Jenny</creatorcontrib><creatorcontrib>Sinche-Guzmán, Andrea</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coronel-Reyes, Julian</au><au>Delgado-Vera, Carlota</au><au>Chavez-Urbina, Jenny</au><au>Sinche-Guzmán, Andrea</au><au>Moran-Castro, Cesar Ernesto</au><au>Borodulina, Tamara</au><au>Valencia-García, Rafael</au><au>Del Cioppo-Morstadt, Javier</au><au>Vera-Lucio, Néstor</au><au>Moran-Castro, Cesar Ernesto</au><au>Vera-Lucio, Néstor</au><au>Valencia-García, Rafael</au><au>Borodulina, Tamara</au><au>Del Cioppo-Morstadt, Javier</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Multiclass Classification of Dry Bean Grains Using Machine Learning Techniques</atitle><btitle>Technologies and Innovation</btitle><seriestitle>Communications in Computer and Information Science</seriestitle><date>2024</date><risdate>2024</risdate><volume>2276</volume><spage>16</spage><epage>27</epage><pages>16-27</pages><issn>1865-0929</issn><eissn>1865-0937</eissn><isbn>3031757017</isbn><isbn>9783031757013</isbn><eisbn>9783031757020</eisbn><eisbn>3031757025</eisbn><abstract>The bean (Phaseolus vulgaris) is a crucial crop for global food security; thus, grain quality plays a meaningful role in the supply chain. Traditional classification involves the manual evaluation of parameters such as length, width, weight, and inaccuracies. However, this manual approach presents challenges in terms of efficiency and subjectivity, as it can be slow due to human errors. This study aims to identify bean grain varieties in terms of their shape by using a machine learning algorithm approach. A database of 3,820 grains from three types—INIAP-420 (1,320), INIAP-422 (1,200), and INIAP-425 (1,300)—was used, containing 7 morphological shape variables. For the analysis of these variables, classification models were created using Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and k-Nearest Neighbors (k-NN) with 10-fold cross-validation, and performance metrics were compared. Overall correct classification rates were determined to be 86.65%, 93.12%, 90.39%, and 87.58% for RF, SVM, MLP, and k-NN, respectively. The SVM classification model, which showed the highest accuracy results, classified the bean types INIAP-420, INIAP-422, and INIAP-425 with 97.72%, 98.33%, and 97.46%, respectively. Based on the achieved performance measurement values, it can be concluded that the study successfully classified bean grain varieties.</abstract><cop>Switzerland</cop><pub>Springer</pub><doi>10.1007/978-3-031-75702-0_2</doi><oclcid>1465267837</oclcid><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8527-6078</orcidid><orcidid>https://orcid.org/0000-0001-8735-9275</orcidid><orcidid>https://orcid.org/0000-0003-1480-0263</orcidid><orcidid>https://orcid.org/0000-0002-7883-5388</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1865-0929
ispartof Technologies and Innovation, 2024, Vol.2276, p.16-27
issn 1865-0929
1865-0937
language eng
recordid cdi_proquest_ebookcentralchapters_31741697_22_27
source Springer Books
subjects Bean grains
Confusion matrix
Machine learning
Metrics of performance
title Multiclass Classification of Dry Bean Grains Using Machine Learning Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Multiclass%20Classification%20of%C2%A0Dry%20Bean%20Grains%20Using%20Machine%20Learning%20Techniques&rft.btitle=Technologies%20and%20Innovation&rft.au=Coronel-Reyes,%20Julian&rft.date=2024&rft.volume=2276&rft.spage=16&rft.epage=27&rft.pages=16-27&rft.issn=1865-0929&rft.eissn=1865-0937&rft.isbn=3031757017&rft.isbn_list=9783031757013&rft_id=info:doi/10.1007/978-3-031-75702-0_2&rft_dat=%3Cproquest_sprin%3EEBC31741697_22_27%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783031757020&rft.eisbn_list=3031757025&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC31741697_22_27&rft_id=info:pmid/&rfr_iscdi=true