Bid Intercession to Unlock Human Control in Decentralized Consensus-Based Multi-robot Task Allocation Algorithms
We investigate the introduction of novel intercession mechanisms in consensus-based decentralized task allocation within a heterogeneous multi-agent fleet. Intercession refers to the principle of agents biding on behalf of other agents or imposing certain allocations in decision-making architectures...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | |
container_start_page | 99 |
container_title | |
container_volume | 2230 |
creator | Guillet, Victor Grand, Christophe Lesire, Charles Picard, Gauthier |
description | We investigate the introduction of novel intercession mechanisms in consensus-based decentralized task allocation within a heterogeneous multi-agent fleet. Intercession refers to the principle of agents biding on behalf of other agents or imposing certain allocations in decision-making architectures leveraging auction-based decision strategies. This is particularly relevant in settings where human operators, having more precise knowledge of the system situation, want to steer or force the multi-robot task allocation (MRTA). We thus extend an existing consensus framework, consensus-based auction algorithm (CBAA), while offering a simple generic method that operates independently of the underlying reasons, enabling interventions in a decentralized coordination process by humans at the agent and task levels. These interventions, whether systematic or occasional, have the added benefit of incurring minimal computational costs for field agents while maintaining the underlying algorithm’s convergence and performance properties. We experimentally evaluate the proposed algorithm, I-CBAA, on synthetic MRTA scenarios implemented using the ROS framework. |
doi_str_mv | 10.1007/978-3-031-73180-8_7 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_31724997_74_110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC31724997_74_110</sourcerecordid><originalsourceid>FETCH-LOGICAL-h1217-c5256c6277d1aa387df4be550607b5d8920148d2974e6551672c10b07043c8553</originalsourceid><addsrcrecordid>eNo9Uctu2zAQZJu2aJL6C3rRtQc2u3wteXTchwM4yCU5E5TExIJl0RXlAu3Xl4qNnhaz8zjMMPYZ4SsC0I0jyyUHiZwkWuDW0xt2JcvjFdu37BKt0RycpAu2KPIzR068-88J94FdoTISjHFSfmSLnLsatLEkDNIlO9x2bXU3THFsYqHSUE2pehr61Oyq9XEfhmqVhmlMfdUN1bfYxAJC3_2N7UzkOORj5rchF3x_7KeOj6lOU_UY8q5a9iUmTHPosn9JYzdt9_kTe_8c-hwX53vNnn58f1yt-ebh591queFbFEi80UKbxgiiFkOQltpnVUetwQDVurVOACrbCkcqGq3RkGgQaiBQsrFay2v25ZS7Db0_jN0-jH98Cp1fLzd-_oEiK8CZ31i0eNLmIhxe4ujrlHbZI_h5C1_K9dKXev1r975sUTzq5DmM6dcx5snH2XQuqNmGQ-k0-7KHUM6RJ-URQf4DkYOGdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC31724997_74_110</pqid></control><display><type>book_chapter</type><title>Bid Intercession to Unlock Human Control in Decentralized Consensus-Based Multi-robot Task Allocation Algorithms</title><source>Springer Books</source><creator>Guillet, Victor ; Grand, Christophe ; Lesire, Charles ; Picard, Gauthier</creator><contributor>Ferrando, Angelo ; Cardoso, Rafael C ; Ferrando, Angelo ; Cardoso, Rafael C.</contributor><creatorcontrib>Guillet, Victor ; Grand, Christophe ; Lesire, Charles ; Picard, Gauthier ; Ferrando, Angelo ; Cardoso, Rafael C ; Ferrando, Angelo ; Cardoso, Rafael C.</creatorcontrib><description>We investigate the introduction of novel intercession mechanisms in consensus-based decentralized task allocation within a heterogeneous multi-agent fleet. Intercession refers to the principle of agents biding on behalf of other agents or imposing certain allocations in decision-making architectures leveraging auction-based decision strategies. This is particularly relevant in settings where human operators, having more precise knowledge of the system situation, want to steer or force the multi-robot task allocation (MRTA). We thus extend an existing consensus framework, consensus-based auction algorithm (CBAA), while offering a simple generic method that operates independently of the underlying reasons, enabling interventions in a decentralized coordination process by humans at the agent and task levels. These interventions, whether systematic or occasional, have the added benefit of incurring minimal computational costs for field agents while maintaining the underlying algorithm’s convergence and performance properties. We experimentally evaluate the proposed algorithm, I-CBAA, on synthetic MRTA scenarios implemented using the ROS framework.</description><identifier>ISSN: 1865-0929</identifier><identifier>ISBN: 9783031731792</identifier><identifier>ISBN: 3031731794</identifier><identifier>EISSN: 1865-0937</identifier><identifier>EISBN: 3031731808</identifier><identifier>EISBN: 9783031731808</identifier><identifier>DOI: 10.1007/978-3-031-73180-8_7</identifier><identifier>OCLC: 1463066933</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Switzerland: Springer</publisher><subject>Consensus-Based Auctions ; Engineering Sciences ; Mixed Initiative ; Multi-Robot Task Allocation ; Physics</subject><ispartof>Agents and Robots for Reliable Engineered Autonomy, 2024, Vol.2230, p.99-114</ispartof><rights>The Author(s), under exclusive license to Springer Nature Switzerland AG 2025</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Communications in Computer and Information Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/31724997-l.jpg</thumbnail><link.rule.ids>309,775,776,780,789,881,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04782096$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Ferrando, Angelo</contributor><contributor>Cardoso, Rafael C</contributor><contributor>Ferrando, Angelo</contributor><contributor>Cardoso, Rafael C.</contributor><creatorcontrib>Guillet, Victor</creatorcontrib><creatorcontrib>Grand, Christophe</creatorcontrib><creatorcontrib>Lesire, Charles</creatorcontrib><creatorcontrib>Picard, Gauthier</creatorcontrib><title>Bid Intercession to Unlock Human Control in Decentralized Consensus-Based Multi-robot Task Allocation Algorithms</title><title>Agents and Robots for Reliable Engineered Autonomy</title><description>We investigate the introduction of novel intercession mechanisms in consensus-based decentralized task allocation within a heterogeneous multi-agent fleet. Intercession refers to the principle of agents biding on behalf of other agents or imposing certain allocations in decision-making architectures leveraging auction-based decision strategies. This is particularly relevant in settings where human operators, having more precise knowledge of the system situation, want to steer or force the multi-robot task allocation (MRTA). We thus extend an existing consensus framework, consensus-based auction algorithm (CBAA), while offering a simple generic method that operates independently of the underlying reasons, enabling interventions in a decentralized coordination process by humans at the agent and task levels. These interventions, whether systematic or occasional, have the added benefit of incurring minimal computational costs for field agents while maintaining the underlying algorithm’s convergence and performance properties. We experimentally evaluate the proposed algorithm, I-CBAA, on synthetic MRTA scenarios implemented using the ROS framework.</description><subject>Consensus-Based Auctions</subject><subject>Engineering Sciences</subject><subject>Mixed Initiative</subject><subject>Multi-Robot Task Allocation</subject><subject>Physics</subject><issn>1865-0929</issn><issn>1865-0937</issn><isbn>9783031731792</isbn><isbn>3031731794</isbn><isbn>3031731808</isbn><isbn>9783031731808</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2024</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9Uctu2zAQZJu2aJL6C3rRtQc2u3wteXTchwM4yCU5E5TExIJl0RXlAu3Xl4qNnhaz8zjMMPYZ4SsC0I0jyyUHiZwkWuDW0xt2JcvjFdu37BKt0RycpAu2KPIzR068-88J94FdoTISjHFSfmSLnLsatLEkDNIlO9x2bXU3THFsYqHSUE2pehr61Oyq9XEfhmqVhmlMfdUN1bfYxAJC3_2N7UzkOORj5rchF3x_7KeOj6lOU_UY8q5a9iUmTHPosn9JYzdt9_kTe_8c-hwX53vNnn58f1yt-ebh591queFbFEi80UKbxgiiFkOQltpnVUetwQDVurVOACrbCkcqGq3RkGgQaiBQsrFay2v25ZS7Db0_jN0-jH98Cp1fLzd-_oEiK8CZ31i0eNLmIhxe4ujrlHbZI_h5C1_K9dKXev1r975sUTzq5DmM6dcx5snH2XQuqNmGQ-k0-7KHUM6RJ-URQf4DkYOGdQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Guillet, Victor</creator><creator>Grand, Christophe</creator><creator>Lesire, Charles</creator><creator>Picard, Gauthier</creator><general>Springer</general><general>Springer Nature Switzerland</general><scope>FFUUA</scope><scope>1XC</scope></search><sort><creationdate>2024</creationdate><title>Bid Intercession to Unlock Human Control in Decentralized Consensus-Based Multi-robot Task Allocation Algorithms</title><author>Guillet, Victor ; Grand, Christophe ; Lesire, Charles ; Picard, Gauthier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h1217-c5256c6277d1aa387df4be550607b5d8920148d2974e6551672c10b07043c8553</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Consensus-Based Auctions</topic><topic>Engineering Sciences</topic><topic>Mixed Initiative</topic><topic>Multi-Robot Task Allocation</topic><topic>Physics</topic><toplevel>online_resources</toplevel><creatorcontrib>Guillet, Victor</creatorcontrib><creatorcontrib>Grand, Christophe</creatorcontrib><creatorcontrib>Lesire, Charles</creatorcontrib><creatorcontrib>Picard, Gauthier</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillet, Victor</au><au>Grand, Christophe</au><au>Lesire, Charles</au><au>Picard, Gauthier</au><au>Ferrando, Angelo</au><au>Cardoso, Rafael C</au><au>Ferrando, Angelo</au><au>Cardoso, Rafael C.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Bid Intercession to Unlock Human Control in Decentralized Consensus-Based Multi-robot Task Allocation Algorithms</atitle><btitle>Agents and Robots for Reliable Engineered Autonomy</btitle><seriestitle>Communications in Computer and Information Science</seriestitle><date>2024</date><risdate>2024</risdate><volume>2230</volume><spage>99</spage><epage>114</epage><pages>99-114</pages><issn>1865-0929</issn><eissn>1865-0937</eissn><isbn>9783031731792</isbn><isbn>3031731794</isbn><eisbn>3031731808</eisbn><eisbn>9783031731808</eisbn><abstract>We investigate the introduction of novel intercession mechanisms in consensus-based decentralized task allocation within a heterogeneous multi-agent fleet. Intercession refers to the principle of agents biding on behalf of other agents or imposing certain allocations in decision-making architectures leveraging auction-based decision strategies. This is particularly relevant in settings where human operators, having more precise knowledge of the system situation, want to steer or force the multi-robot task allocation (MRTA). We thus extend an existing consensus framework, consensus-based auction algorithm (CBAA), while offering a simple generic method that operates independently of the underlying reasons, enabling interventions in a decentralized coordination process by humans at the agent and task levels. These interventions, whether systematic or occasional, have the added benefit of incurring minimal computational costs for field agents while maintaining the underlying algorithm’s convergence and performance properties. We experimentally evaluate the proposed algorithm, I-CBAA, on synthetic MRTA scenarios implemented using the ROS framework.</abstract><cop>Switzerland</cop><pub>Springer</pub><doi>10.1007/978-3-031-73180-8_7</doi><oclcid>1463066933</oclcid><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1865-0929 |
ispartof | Agents and Robots for Reliable Engineered Autonomy, 2024, Vol.2230, p.99-114 |
issn | 1865-0929 1865-0937 |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_31724997_74_110 |
source | Springer Books |
subjects | Consensus-Based Auctions Engineering Sciences Mixed Initiative Multi-Robot Task Allocation Physics |
title | Bid Intercession to Unlock Human Control in Decentralized Consensus-Based Multi-robot Task Allocation Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Bid%20Intercession%20to%20Unlock%20Human%20Control%20in%20Decentralized%20Consensus-Based%20Multi-robot%20Task%20Allocation%20Algorithms&rft.btitle=Agents%20and%20Robots%20for%20Reliable%20Engineered%20Autonomy&rft.au=Guillet,%20Victor&rft.date=2024&rft.volume=2230&rft.spage=99&rft.epage=114&rft.pages=99-114&rft.issn=1865-0929&rft.eissn=1865-0937&rft.isbn=9783031731792&rft.isbn_list=3031731794&rft_id=info:doi/10.1007/978-3-031-73180-8_7&rft_dat=%3Cproquest_hal_p%3EEBC31724997_74_110%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=3031731808&rft.eisbn_list=9783031731808&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC31724997_74_110&rft_id=info:pmid/&rfr_iscdi=true |