Representing Uncertainty with Expanded Ueberweg Diagrams

Euler diagrams often require several figures to adequately represent propositions and syllogisms. Euler’s followers, notably Friedrich Ueberweg, endeavored to overcome this difficulty with the use of dotted lines to express uncertainty about the relation between the terms of a proposition. Subsequen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moktefi, Amirouche, Bhattacharjee, Reetu, Lemanski, Jens
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue
container_start_page 207
container_title
container_volume 14981
creator Moktefi, Amirouche
Bhattacharjee, Reetu
Lemanski, Jens
description Euler diagrams often require several figures to adequately represent propositions and syllogisms. Euler’s followers, notably Friedrich Ueberweg, endeavored to overcome this difficulty with the use of dotted lines to express uncertainty about the relation between the terms of a proposition. Subsequently, Venn regarded such attempts as ineffectual and went to construct his own celebrated scheme. In this paper, we argue that Ueberweg’s method could be expanded to meet Venn’s expectations, and hence, produce alternative Venn-like diagrams.
doi_str_mv 10.1007/978-3-031-71291-3_17
format Book Chapter
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_31652779_148_220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC31652779_148_220</sourcerecordid><originalsourceid>FETCH-LOGICAL-p220t-bf686d0dd17a763869e8ac75477c45b1d2033b46dfd21b35181b4f6fba5f93af3</originalsourceid><addsrcrecordid>eNpFkF1OwzAQhM2vaEtvwEMuEPB6HTt-RKX8SJWQEH227NhpAyUNdlDhNpyFk-G2SDytNKNZzXyEXAC9BErllZJljjlFyCUwBTlqkAdkiEnZCeqQDEBAMpCro3-D0mMyoEhZriTHUzIEXgjgjFN5RsYxvlBKEbFQjA-IevJd8NG3fdMusnlb-dCbpu2_sk3TL3--p5-daZ132dxbHzZ-kd00ZhHMWzwnJ7VZRT_-uyMyv50-T-7z2ePdw-R6lneM0T63tSiFo86BNFJgKZQvTSULLmXFCwuOpTKWC1c7BhYLKMHyWtTWFLVCU-OIsP3f2IXU0Qdt1-vXqIHqLSadMGnUabveUdFbTClU7ENdWL9_-Nhrv01VaWcwq2pput6HqBFEwaRUGnipU138BYZHZyk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC31652779_148_220</pqid></control><display><type>book_chapter</type><title>Representing Uncertainty with Expanded Ueberweg Diagrams</title><source>Springer Books</source><creator>Moktefi, Amirouche ; Bhattacharjee, Reetu ; Lemanski, Jens</creator><contributor>Manalo, Emmanuel ; Lemanski, Jens ; Burns, Richard ; Viana, Petrucio ; Bhattacharjee, Reetu ; Johansen, Mikkel Willum</contributor><creatorcontrib>Moktefi, Amirouche ; Bhattacharjee, Reetu ; Lemanski, Jens ; Manalo, Emmanuel ; Lemanski, Jens ; Burns, Richard ; Viana, Petrucio ; Bhattacharjee, Reetu ; Johansen, Mikkel Willum</creatorcontrib><description>Euler diagrams often require several figures to adequately represent propositions and syllogisms. Euler’s followers, notably Friedrich Ueberweg, endeavored to overcome this difficulty with the use of dotted lines to express uncertainty about the relation between the terms of a proposition. Subsequently, Venn regarded such attempts as ineffectual and went to construct his own celebrated scheme. In this paper, we argue that Ueberweg’s method could be expanded to meet Venn’s expectations, and hence, produce alternative Venn-like diagrams.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3031712900</identifier><identifier>ISBN: 9783031712906</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3031712919</identifier><identifier>EISBN: 9783031712913</identifier><identifier>DOI: 10.1007/978-3-031-71291-3_17</identifier><identifier>OCLC: 1456142407</identifier><identifier>LCCallNum: T385 .D534 2024</identifier><language>eng</language><publisher>Switzerland: Springer</publisher><subject>dotted lines ; Euler diagram ; Ueberweg ; uncertainty ; Venn diagram</subject><ispartof>Diagrammatic Representation and Inference, 2024, Vol.14981, p.207-214</ispartof><rights>The Author(s), under exclusive license to Springer Nature Switzerland AG 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/31652779-l.jpg</thumbnail><link.rule.ids>775,776,780,789,27902</link.rule.ids></links><search><contributor>Manalo, Emmanuel</contributor><contributor>Lemanski, Jens</contributor><contributor>Burns, Richard</contributor><contributor>Viana, Petrucio</contributor><contributor>Bhattacharjee, Reetu</contributor><contributor>Johansen, Mikkel Willum</contributor><creatorcontrib>Moktefi, Amirouche</creatorcontrib><creatorcontrib>Bhattacharjee, Reetu</creatorcontrib><creatorcontrib>Lemanski, Jens</creatorcontrib><title>Representing Uncertainty with Expanded Ueberweg Diagrams</title><title>Diagrammatic Representation and Inference</title><description>Euler diagrams often require several figures to adequately represent propositions and syllogisms. Euler’s followers, notably Friedrich Ueberweg, endeavored to overcome this difficulty with the use of dotted lines to express uncertainty about the relation between the terms of a proposition. Subsequently, Venn regarded such attempts as ineffectual and went to construct his own celebrated scheme. In this paper, we argue that Ueberweg’s method could be expanded to meet Venn’s expectations, and hence, produce alternative Venn-like diagrams.</description><subject>dotted lines</subject><subject>Euler diagram</subject><subject>Ueberweg</subject><subject>uncertainty</subject><subject>Venn diagram</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3031712900</isbn><isbn>9783031712906</isbn><isbn>3031712919</isbn><isbn>9783031712913</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2024</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkF1OwzAQhM2vaEtvwEMuEPB6HTt-RKX8SJWQEH227NhpAyUNdlDhNpyFk-G2SDytNKNZzXyEXAC9BErllZJljjlFyCUwBTlqkAdkiEnZCeqQDEBAMpCro3-D0mMyoEhZriTHUzIEXgjgjFN5RsYxvlBKEbFQjA-IevJd8NG3fdMusnlb-dCbpu2_sk3TL3--p5-daZ132dxbHzZ-kd00ZhHMWzwnJ7VZRT_-uyMyv50-T-7z2ePdw-R6lneM0T63tSiFo86BNFJgKZQvTSULLmXFCwuOpTKWC1c7BhYLKMHyWtTWFLVCU-OIsP3f2IXU0Qdt1-vXqIHqLSadMGnUabveUdFbTClU7ENdWL9_-Nhrv01VaWcwq2pput6HqBFEwaRUGnipU138BYZHZyk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Moktefi, Amirouche</creator><creator>Bhattacharjee, Reetu</creator><creator>Lemanski, Jens</creator><general>Springer</general><general>Springer Nature Switzerland</general><scope>FFUUA</scope></search><sort><creationdate>2024</creationdate><title>Representing Uncertainty with Expanded Ueberweg Diagrams</title><author>Moktefi, Amirouche ; Bhattacharjee, Reetu ; Lemanski, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p220t-bf686d0dd17a763869e8ac75477c45b1d2033b46dfd21b35181b4f6fba5f93af3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2024</creationdate><topic>dotted lines</topic><topic>Euler diagram</topic><topic>Ueberweg</topic><topic>uncertainty</topic><topic>Venn diagram</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moktefi, Amirouche</creatorcontrib><creatorcontrib>Bhattacharjee, Reetu</creatorcontrib><creatorcontrib>Lemanski, Jens</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moktefi, Amirouche</au><au>Bhattacharjee, Reetu</au><au>Lemanski, Jens</au><au>Manalo, Emmanuel</au><au>Lemanski, Jens</au><au>Burns, Richard</au><au>Viana, Petrucio</au><au>Bhattacharjee, Reetu</au><au>Johansen, Mikkel Willum</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Representing Uncertainty with Expanded Ueberweg Diagrams</atitle><btitle>Diagrammatic Representation and Inference</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2024</date><risdate>2024</risdate><volume>14981</volume><spage>207</spage><epage>214</epage><pages>207-214</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3031712900</isbn><isbn>9783031712906</isbn><eisbn>3031712919</eisbn><eisbn>9783031712913</eisbn><abstract>Euler diagrams often require several figures to adequately represent propositions and syllogisms. Euler’s followers, notably Friedrich Ueberweg, endeavored to overcome this difficulty with the use of dotted lines to express uncertainty about the relation between the terms of a proposition. Subsequently, Venn regarded such attempts as ineffectual and went to construct his own celebrated scheme. In this paper, we argue that Ueberweg’s method could be expanded to meet Venn’s expectations, and hence, produce alternative Venn-like diagrams.</abstract><cop>Switzerland</cop><pub>Springer</pub><doi>10.1007/978-3-031-71291-3_17</doi><oclcid>1456142407</oclcid><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Diagrammatic Representation and Inference, 2024, Vol.14981, p.207-214
issn 0302-9743
1611-3349
language eng
recordid cdi_proquest_ebookcentralchapters_31652779_148_220
source Springer Books
subjects dotted lines
Euler diagram
Ueberweg
uncertainty
Venn diagram
title Representing Uncertainty with Expanded Ueberweg Diagrams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Representing%20Uncertainty%20with%C2%A0Expanded%20Ueberweg%20Diagrams&rft.btitle=Diagrammatic%20Representation%20and%20Inference&rft.au=Moktefi,%20Amirouche&rft.date=2024&rft.volume=14981&rft.spage=207&rft.epage=214&rft.pages=207-214&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3031712900&rft.isbn_list=9783031712906&rft_id=info:doi/10.1007/978-3-031-71291-3_17&rft_dat=%3Cproquest_sprin%3EEBC31652779_148_220%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3031712919&rft.eisbn_list=9783031712913&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC31652779_148_220&rft_id=info:pmid/&rfr_iscdi=true