Representing Uncertainty with Expanded Ueberweg Diagrams
Euler diagrams often require several figures to adequately represent propositions and syllogisms. Euler’s followers, notably Friedrich Ueberweg, endeavored to overcome this difficulty with the use of dotted lines to express uncertainty about the relation between the terms of a proposition. Subsequen...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 214 |
---|---|
container_issue | |
container_start_page | 207 |
container_title | |
container_volume | 14981 |
creator | Moktefi, Amirouche Bhattacharjee, Reetu Lemanski, Jens |
description | Euler diagrams often require several figures to adequately represent propositions and syllogisms. Euler’s followers, notably Friedrich Ueberweg, endeavored to overcome this difficulty with the use of dotted lines to express uncertainty about the relation between the terms of a proposition. Subsequently, Venn regarded such attempts as ineffectual and went to construct his own celebrated scheme. In this paper, we argue that Ueberweg’s method could be expanded to meet Venn’s expectations, and hence, produce alternative Venn-like diagrams. |
doi_str_mv | 10.1007/978-3-031-71291-3_17 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_31652779_148_220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC31652779_148_220</sourcerecordid><originalsourceid>FETCH-LOGICAL-p220t-bf686d0dd17a763869e8ac75477c45b1d2033b46dfd21b35181b4f6fba5f93af3</originalsourceid><addsrcrecordid>eNpFkF1OwzAQhM2vaEtvwEMuEPB6HTt-RKX8SJWQEH227NhpAyUNdlDhNpyFk-G2SDytNKNZzXyEXAC9BErllZJljjlFyCUwBTlqkAdkiEnZCeqQDEBAMpCro3-D0mMyoEhZriTHUzIEXgjgjFN5RsYxvlBKEbFQjA-IevJd8NG3fdMusnlb-dCbpu2_sk3TL3--p5-daZ132dxbHzZ-kd00ZhHMWzwnJ7VZRT_-uyMyv50-T-7z2ePdw-R6lneM0T63tSiFo86BNFJgKZQvTSULLmXFCwuOpTKWC1c7BhYLKMHyWtTWFLVCU-OIsP3f2IXU0Qdt1-vXqIHqLSadMGnUabveUdFbTClU7ENdWL9_-Nhrv01VaWcwq2pput6HqBFEwaRUGnipU138BYZHZyk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC31652779_148_220</pqid></control><display><type>book_chapter</type><title>Representing Uncertainty with Expanded Ueberweg Diagrams</title><source>Springer Books</source><creator>Moktefi, Amirouche ; Bhattacharjee, Reetu ; Lemanski, Jens</creator><contributor>Manalo, Emmanuel ; Lemanski, Jens ; Burns, Richard ; Viana, Petrucio ; Bhattacharjee, Reetu ; Johansen, Mikkel Willum</contributor><creatorcontrib>Moktefi, Amirouche ; Bhattacharjee, Reetu ; Lemanski, Jens ; Manalo, Emmanuel ; Lemanski, Jens ; Burns, Richard ; Viana, Petrucio ; Bhattacharjee, Reetu ; Johansen, Mikkel Willum</creatorcontrib><description>Euler diagrams often require several figures to adequately represent propositions and syllogisms. Euler’s followers, notably Friedrich Ueberweg, endeavored to overcome this difficulty with the use of dotted lines to express uncertainty about the relation between the terms of a proposition. Subsequently, Venn regarded such attempts as ineffectual and went to construct his own celebrated scheme. In this paper, we argue that Ueberweg’s method could be expanded to meet Venn’s expectations, and hence, produce alternative Venn-like diagrams.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3031712900</identifier><identifier>ISBN: 9783031712906</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3031712919</identifier><identifier>EISBN: 9783031712913</identifier><identifier>DOI: 10.1007/978-3-031-71291-3_17</identifier><identifier>OCLC: 1456142407</identifier><identifier>LCCallNum: T385 .D534 2024</identifier><language>eng</language><publisher>Switzerland: Springer</publisher><subject>dotted lines ; Euler diagram ; Ueberweg ; uncertainty ; Venn diagram</subject><ispartof>Diagrammatic Representation and Inference, 2024, Vol.14981, p.207-214</ispartof><rights>The Author(s), under exclusive license to Springer Nature Switzerland AG 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/31652779-l.jpg</thumbnail><link.rule.ids>775,776,780,789,27902</link.rule.ids></links><search><contributor>Manalo, Emmanuel</contributor><contributor>Lemanski, Jens</contributor><contributor>Burns, Richard</contributor><contributor>Viana, Petrucio</contributor><contributor>Bhattacharjee, Reetu</contributor><contributor>Johansen, Mikkel Willum</contributor><creatorcontrib>Moktefi, Amirouche</creatorcontrib><creatorcontrib>Bhattacharjee, Reetu</creatorcontrib><creatorcontrib>Lemanski, Jens</creatorcontrib><title>Representing Uncertainty with Expanded Ueberweg Diagrams</title><title>Diagrammatic Representation and Inference</title><description>Euler diagrams often require several figures to adequately represent propositions and syllogisms. Euler’s followers, notably Friedrich Ueberweg, endeavored to overcome this difficulty with the use of dotted lines to express uncertainty about the relation between the terms of a proposition. Subsequently, Venn regarded such attempts as ineffectual and went to construct his own celebrated scheme. In this paper, we argue that Ueberweg’s method could be expanded to meet Venn’s expectations, and hence, produce alternative Venn-like diagrams.</description><subject>dotted lines</subject><subject>Euler diagram</subject><subject>Ueberweg</subject><subject>uncertainty</subject><subject>Venn diagram</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3031712900</isbn><isbn>9783031712906</isbn><isbn>3031712919</isbn><isbn>9783031712913</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2024</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkF1OwzAQhM2vaEtvwEMuEPB6HTt-RKX8SJWQEH227NhpAyUNdlDhNpyFk-G2SDytNKNZzXyEXAC9BErllZJljjlFyCUwBTlqkAdkiEnZCeqQDEBAMpCro3-D0mMyoEhZriTHUzIEXgjgjFN5RsYxvlBKEbFQjA-IevJd8NG3fdMusnlb-dCbpu2_sk3TL3--p5-daZ132dxbHzZ-kd00ZhHMWzwnJ7VZRT_-uyMyv50-T-7z2ePdw-R6lneM0T63tSiFo86BNFJgKZQvTSULLmXFCwuOpTKWC1c7BhYLKMHyWtTWFLVCU-OIsP3f2IXU0Qdt1-vXqIHqLSadMGnUabveUdFbTClU7ENdWL9_-Nhrv01VaWcwq2pput6HqBFEwaRUGnipU138BYZHZyk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Moktefi, Amirouche</creator><creator>Bhattacharjee, Reetu</creator><creator>Lemanski, Jens</creator><general>Springer</general><general>Springer Nature Switzerland</general><scope>FFUUA</scope></search><sort><creationdate>2024</creationdate><title>Representing Uncertainty with Expanded Ueberweg Diagrams</title><author>Moktefi, Amirouche ; Bhattacharjee, Reetu ; Lemanski, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p220t-bf686d0dd17a763869e8ac75477c45b1d2033b46dfd21b35181b4f6fba5f93af3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2024</creationdate><topic>dotted lines</topic><topic>Euler diagram</topic><topic>Ueberweg</topic><topic>uncertainty</topic><topic>Venn diagram</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moktefi, Amirouche</creatorcontrib><creatorcontrib>Bhattacharjee, Reetu</creatorcontrib><creatorcontrib>Lemanski, Jens</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moktefi, Amirouche</au><au>Bhattacharjee, Reetu</au><au>Lemanski, Jens</au><au>Manalo, Emmanuel</au><au>Lemanski, Jens</au><au>Burns, Richard</au><au>Viana, Petrucio</au><au>Bhattacharjee, Reetu</au><au>Johansen, Mikkel Willum</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Representing Uncertainty with Expanded Ueberweg Diagrams</atitle><btitle>Diagrammatic Representation and Inference</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2024</date><risdate>2024</risdate><volume>14981</volume><spage>207</spage><epage>214</epage><pages>207-214</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3031712900</isbn><isbn>9783031712906</isbn><eisbn>3031712919</eisbn><eisbn>9783031712913</eisbn><abstract>Euler diagrams often require several figures to adequately represent propositions and syllogisms. Euler’s followers, notably Friedrich Ueberweg, endeavored to overcome this difficulty with the use of dotted lines to express uncertainty about the relation between the terms of a proposition. Subsequently, Venn regarded such attempts as ineffectual and went to construct his own celebrated scheme. In this paper, we argue that Ueberweg’s method could be expanded to meet Venn’s expectations, and hence, produce alternative Venn-like diagrams.</abstract><cop>Switzerland</cop><pub>Springer</pub><doi>10.1007/978-3-031-71291-3_17</doi><oclcid>1456142407</oclcid><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Diagrammatic Representation and Inference, 2024, Vol.14981, p.207-214 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_31652779_148_220 |
source | Springer Books |
subjects | dotted lines Euler diagram Ueberweg uncertainty Venn diagram |
title | Representing Uncertainty with Expanded Ueberweg Diagrams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Representing%20Uncertainty%20with%C2%A0Expanded%20Ueberweg%20Diagrams&rft.btitle=Diagrammatic%20Representation%20and%20Inference&rft.au=Moktefi,%20Amirouche&rft.date=2024&rft.volume=14981&rft.spage=207&rft.epage=214&rft.pages=207-214&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3031712900&rft.isbn_list=9783031712906&rft_id=info:doi/10.1007/978-3-031-71291-3_17&rft_dat=%3Cproquest_sprin%3EEBC31652779_148_220%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3031712919&rft.eisbn_list=9783031712913&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC31652779_148_220&rft_id=info:pmid/&rfr_iscdi=true |