Deep Learning in Big Data: Challenges and Perspectives

Large amounts of data are frequently available in businesses, and in recent years, there has been an enormous possibility formed about analyzing these data sets. The academic community has scrutinized this expectation and found it helpful in various industries. Nowadays, the terms big data and deep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Suganeshwari, G, Divya, D
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue
container_start_page 132
container_title
container_volume
creator Suganeshwari, G
Divya, D
description Large amounts of data are frequently available in businesses, and in recent years, there has been an enormous possibility formed about analyzing these data sets. The academic community has scrutinized this expectation and found it helpful in various industries. Nowadays, the terms big data and deep learning are commonly used in the scientific community. Several conventional data processing approaches restrict the processing of vast amounts of data. To achieve precise and efficient real-time data processing, advanced algorithms that incorporate machine and deep learning techniques are required for big data analytics. Despite the difficulties posed by the high volume, variety, velocity, and veracity of big data, recent research has successfully combined various deep learning algorithms with hybrid learning and training processes to enable rapid data analysis. As a result, big data offers significant opportunities for a wide range of industries, including e-commerce, industrial control, and innovative medicine. Despite the potential benefits, mining and processing large quantities of information continue to present challenges that must be addressed. This article examines recent studies on deep learning models for discovering features in massive data. In addition, we discuss upcoming issues and highlight the significant data deep learning barriers that still need to be overcome.
doi_str_mv 10.1201/9781032634050-7
format Book Chapter
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_30979158_149_167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC30979158_149_167</sourcerecordid><originalsourceid>FETCH-LOGICAL-i180t-a530256455077901f50e3c882a95e498d1781d4788508be216a242c0316ce6423</originalsourceid><addsrcrecordid>eNpVkL1OAzEQhI0QCAipEd29wMGuf9clJBCQItFAbTkXX7A4zsE-QLw9CUlDNdrRzKfVMHaBcIUc8NoaQhBcCwkKanPAxn8OCOLckDjc37uEFMfsDCVyzTlpOmHjUuIClJbKEsEpu5yGsK7mwec-9qsq9tVtXFVTP_hzdtT6roTxXkfs5f7uefJQz59mj5ObeR2RYKi9EsC3PAXGWMBWQRANEfdWBWlpiZtvltIQKaBF4Kg9l7wBgboJWnIxYmrHXef08RnK4MIipbcm9EP2XfPq10PIxQmwxqIih9I61GbTm-16sW9TfvffKXdLN_ifLuU2-76JZcspDsFth3P_hnPGfW2wMfVc_AKLLVzL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC30979158_149_167</pqid></control><display><type>book_chapter</type><title>Deep Learning in Big Data: Challenges and Perspectives</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Suganeshwari, G ; Divya, D</creator><contributor>Sardar, Tanvir Habib ; Pandey, Bishwajeet Kumar ; Sardar, Tanvir Habib</contributor><creatorcontrib>Suganeshwari, G ; Divya, D ; Sardar, Tanvir Habib ; Pandey, Bishwajeet Kumar ; Sardar, Tanvir Habib</creatorcontrib><description>Large amounts of data are frequently available in businesses, and in recent years, there has been an enormous possibility formed about analyzing these data sets. The academic community has scrutinized this expectation and found it helpful in various industries. Nowadays, the terms big data and deep learning are commonly used in the scientific community. Several conventional data processing approaches restrict the processing of vast amounts of data. To achieve precise and efficient real-time data processing, advanced algorithms that incorporate machine and deep learning techniques are required for big data analytics. Despite the difficulties posed by the high volume, variety, velocity, and veracity of big data, recent research has successfully combined various deep learning algorithms with hybrid learning and training processes to enable rapid data analysis. As a result, big data offers significant opportunities for a wide range of industries, including e-commerce, industrial control, and innovative medicine. Despite the potential benefits, mining and processing large quantities of information continue to present challenges that must be addressed. This article examines recent studies on deep learning models for discovering features in massive data. In addition, we discuss upcoming issues and highlight the significant data deep learning barriers that still need to be overcome.</description><edition>1</edition><identifier>ISBN: 9781032634043</identifier><identifier>ISBN: 9781032555607</identifier><identifier>ISBN: 1032555602</identifier><identifier>ISBN: 1032634049</identifier><identifier>EISBN: 9781003822783</identifier><identifier>EISBN: 1032634057</identifier><identifier>EISBN: 1003822789</identifier><identifier>EISBN: 9781003822721</identifier><identifier>EISBN: 9781032634050</identifier><identifier>EISBN: 100382272X</identifier><identifier>DOI: 10.1201/9781032634050-7</identifier><identifier>OCLC: 1412622868</identifier><identifier>LCCallNum: Q325.5 .B543 2024</identifier><language>eng</language><publisher>United Kingdom: CRC Press</publisher><ispartof>Big Data Computing, 2024, p.132-144</ispartof><rights>2024 CRC Press</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9048-7371 ; 0000-0003-4870-0375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/30979158-l.jpg</thumbnail><link.rule.ids>779,780,784,793,27925</link.rule.ids></links><search><contributor>Sardar, Tanvir Habib</contributor><contributor>Pandey, Bishwajeet Kumar</contributor><contributor>Sardar, Tanvir Habib</contributor><creatorcontrib>Suganeshwari, G</creatorcontrib><creatorcontrib>Divya, D</creatorcontrib><title>Deep Learning in Big Data: Challenges and Perspectives</title><title>Big Data Computing</title><description>Large amounts of data are frequently available in businesses, and in recent years, there has been an enormous possibility formed about analyzing these data sets. The academic community has scrutinized this expectation and found it helpful in various industries. Nowadays, the terms big data and deep learning are commonly used in the scientific community. Several conventional data processing approaches restrict the processing of vast amounts of data. To achieve precise and efficient real-time data processing, advanced algorithms that incorporate machine and deep learning techniques are required for big data analytics. Despite the difficulties posed by the high volume, variety, velocity, and veracity of big data, recent research has successfully combined various deep learning algorithms with hybrid learning and training processes to enable rapid data analysis. As a result, big data offers significant opportunities for a wide range of industries, including e-commerce, industrial control, and innovative medicine. Despite the potential benefits, mining and processing large quantities of information continue to present challenges that must be addressed. This article examines recent studies on deep learning models for discovering features in massive data. In addition, we discuss upcoming issues and highlight the significant data deep learning barriers that still need to be overcome.</description><isbn>9781032634043</isbn><isbn>9781032555607</isbn><isbn>1032555602</isbn><isbn>1032634049</isbn><isbn>9781003822783</isbn><isbn>1032634057</isbn><isbn>1003822789</isbn><isbn>9781003822721</isbn><isbn>9781032634050</isbn><isbn>100382272X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2024</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkL1OAzEQhI0QCAipEd29wMGuf9clJBCQItFAbTkXX7A4zsE-QLw9CUlDNdrRzKfVMHaBcIUc8NoaQhBcCwkKanPAxn8OCOLckDjc37uEFMfsDCVyzTlpOmHjUuIClJbKEsEpu5yGsK7mwec-9qsq9tVtXFVTP_hzdtT6roTxXkfs5f7uefJQz59mj5ObeR2RYKi9EsC3PAXGWMBWQRANEfdWBWlpiZtvltIQKaBF4Kg9l7wBgboJWnIxYmrHXef08RnK4MIipbcm9EP2XfPq10PIxQmwxqIih9I61GbTm-16sW9TfvffKXdLN_ifLuU2-76JZcspDsFth3P_hnPGfW2wMfVc_AKLLVzL</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Suganeshwari, G</creator><creator>Divya, D</creator><general>CRC Press</general><general>Taylor &amp; Francis Group</general><scope>FFUUA</scope><orcidid>https://orcid.org/0000-0002-9048-7371</orcidid><orcidid>https://orcid.org/0000-0003-4870-0375</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Learning in Big Data</title><author>Suganeshwari, G ; Divya, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i180t-a530256455077901f50e3c882a95e498d1781d4788508be216a242c0316ce6423</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Suganeshwari, G</creatorcontrib><creatorcontrib>Divya, D</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suganeshwari, G</au><au>Divya, D</au><au>Sardar, Tanvir Habib</au><au>Pandey, Bishwajeet Kumar</au><au>Sardar, Tanvir Habib</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Deep Learning in Big Data: Challenges and Perspectives</atitle><btitle>Big Data Computing</btitle><date>2024</date><risdate>2024</risdate><spage>132</spage><epage>144</epage><pages>132-144</pages><isbn>9781032634043</isbn><isbn>9781032555607</isbn><isbn>1032555602</isbn><isbn>1032634049</isbn><eisbn>9781003822783</eisbn><eisbn>1032634057</eisbn><eisbn>1003822789</eisbn><eisbn>9781003822721</eisbn><eisbn>9781032634050</eisbn><eisbn>100382272X</eisbn><abstract>Large amounts of data are frequently available in businesses, and in recent years, there has been an enormous possibility formed about analyzing these data sets. The academic community has scrutinized this expectation and found it helpful in various industries. Nowadays, the terms big data and deep learning are commonly used in the scientific community. Several conventional data processing approaches restrict the processing of vast amounts of data. To achieve precise and efficient real-time data processing, advanced algorithms that incorporate machine and deep learning techniques are required for big data analytics. Despite the difficulties posed by the high volume, variety, velocity, and veracity of big data, recent research has successfully combined various deep learning algorithms with hybrid learning and training processes to enable rapid data analysis. As a result, big data offers significant opportunities for a wide range of industries, including e-commerce, industrial control, and innovative medicine. Despite the potential benefits, mining and processing large quantities of information continue to present challenges that must be addressed. This article examines recent studies on deep learning models for discovering features in massive data. In addition, we discuss upcoming issues and highlight the significant data deep learning barriers that still need to be overcome.</abstract><cop>United Kingdom</cop><pub>CRC Press</pub><doi>10.1201/9781032634050-7</doi><oclcid>1412622868</oclcid><tpages>13</tpages><edition>1</edition><orcidid>https://orcid.org/0000-0002-9048-7371</orcidid><orcidid>https://orcid.org/0000-0003-4870-0375</orcidid></addata></record>
fulltext fulltext
identifier ISBN: 9781032634043
ispartof Big Data Computing, 2024, p.132-144
issn
language eng
recordid cdi_proquest_ebookcentralchapters_30979158_149_167
source O'Reilly Online Learning: Academic/Public Library Edition
title Deep Learning in Big Data: Challenges and Perspectives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Deep%20Learning%20in%20Big%20Data:%20Challenges%20and%20Perspectives&rft.btitle=Big%20Data%20Computing&rft.au=Suganeshwari,%20G&rft.date=2024&rft.spage=132&rft.epage=144&rft.pages=132-144&rft.isbn=9781032634043&rft.isbn_list=9781032555607&rft.isbn_list=1032555602&rft.isbn_list=1032634049&rft_id=info:doi/10.1201/9781032634050-7&rft_dat=%3Cproquest_infor%3EEBC30979158_149_167%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781003822783&rft.eisbn_list=1032634057&rft.eisbn_list=1003822789&rft.eisbn_list=9781003822721&rft.eisbn_list=9781032634050&rft.eisbn_list=100382272X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC30979158_149_167&rft_id=info:pmid/&rfr_iscdi=true