Numerical Methods for Large-Scale Dynamic Economic Models
We survey numerical methods that are tractable in dynamic economic models with a finite, large number of continuous state variables. (Examples of such models are new Keynesian models, life-cycle models, heterogeneous-agents models, asset-pricing models, multisector models, multicountry models, and c...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 477 |
---|---|
container_issue | |
container_start_page | 325 |
container_title | |
container_volume | 3 |
creator | Maliar, Lilia Maliar, Serguei |
description | We survey numerical methods that are tractable in dynamic economic models with a finite, large number of continuous state variables. (Examples of such models are new Keynesian models, life-cycle models, heterogeneous-agents models, asset-pricing models, multisector models, multicountry models, and climate change models.) First, we describe the ingredients that help us to reduce the cost of global solution methods. These are efficient nonproduct techniques for interpolating and approximating functions (Smolyak, stochastic simulation, and ε-distinguishable set grids), accurate low-cost monomial integration formulas, derivative-free solvers, and numerically stable regression methods. Second, we discuss endogenous grid and envelope condition methods that reduce the cost and increase accuracy of value function iteration. Third, we show precomputation techniques that construct solution manifolds for some models’ variables outside the main iterative cycle. Fourth, we review techniques that increase the accuracy of perturbation methods: a change of variables and a hybrid of local and global solutions. Finally, we show examples of parallel computation using multiple CPUs and GPUs including applications on a supercomputer. We illustrate the performance of the surveyed methods using a multiagent model. Many codes are publicly available. |
doi_str_mv | 10.1016/B978-0-444-52980-0.00007-4 |
format | Book Chapter |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_1589018_192_343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>CX6941400016</galeid><els_id>B9780444529800000074</els_id><sourcerecordid>CX6941400016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-171d3f7108aabe83e3e4cc09b570ca1f487cd6c75f508e56e59f165cf96558983</originalsourceid><addsrcrecordid>eNotUclOwzAQNWIRFfQHOEXcDTOxHdtHlrJILRyAs-U6ExpIa3BSJP4et2Uus7w3I715jJ0jXCBgdXltteHApZRcldYAhwvIobncY-OMARiwArWR-7s-M7dEOGAjVFpygBKP2MhoFGUJqI_ZuO8_8g1EZbWqRsw-rZeU2uC7YkbDItZ90cRUTH16J_6Sx1Tc_q78sg3FJMRV3BSzWFPXn7LDxnc9jf_zCXu7m7zePPDp8_3jzdWUB1mqgaPGWjQawXg_JyNIkAwB7FxpCB4baXSoq6BVo8CQqkjZBisVGlspZawRJ0zu7n6l-L2mfnA0j_Ez0GpIvgsL_zVQ6h1mMqBxaEsnpMhrZ7u196zB_aTOVVai3GivMni7A7MO-mkpuT60tApUt4nC4OrYOgS3ccFtXHDg8m_d9rm53rrgpPgDHulzCg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC1589018_192_343</pqid></control><display><type>book_chapter</type><title>Numerical Methods for Large-Scale Dynamic Economic Models</title><source>ScienceDirect eBooks</source><source>O'Reilly Online Learning: Academic/Public Library Edition</source><source>Access via ScienceDirect (Elsevier)</source><creator>Maliar, Lilia ; Maliar, Serguei</creator><contributor>Judd, Kenneth L ; Schmedders, Karl</contributor><creatorcontrib>Maliar, Lilia ; Maliar, Serguei ; Judd, Kenneth L ; Schmedders, Karl</creatorcontrib><description>We survey numerical methods that are tractable in dynamic economic models with a finite, large number of continuous state variables. (Examples of such models are new Keynesian models, life-cycle models, heterogeneous-agents models, asset-pricing models, multisector models, multicountry models, and climate change models.) First, we describe the ingredients that help us to reduce the cost of global solution methods. These are efficient nonproduct techniques for interpolating and approximating functions (Smolyak, stochastic simulation, and ε-distinguishable set grids), accurate low-cost monomial integration formulas, derivative-free solvers, and numerically stable regression methods. Second, we discuss endogenous grid and envelope condition methods that reduce the cost and increase accuracy of value function iteration. Third, we show precomputation techniques that construct solution manifolds for some models’ variables outside the main iterative cycle. Fourth, we review techniques that increase the accuracy of perturbation methods: a change of variables and a hybrid of local and global solutions. Finally, we show examples of parallel computation using multiple CPUs and GPUs including applications on a supercomputer. We illustrate the performance of the surveyed methods using a multiagent model. Many codes are publicly available.</description><identifier>ISSN: 1574-0021</identifier><identifier>ISBN: 9780444529800</identifier><identifier>ISBN: 0444529802</identifier><identifier>EISBN: 9780080931784</identifier><identifier>EISBN: 0080931782</identifier><identifier>DOI: 10.1016/B978-0-444-52980-0.00007-4</identifier><identifier>OCLC: 871322017</identifier><identifier>LCCallNum: HB143.5</identifier><language>eng</language><publisher>The Netherlands: Elsevier B.V</publisher><subject>[formula omitted]-distinguishable set ; Business mathematics & systems ; Curse of dimensionality ; Endogenous grid ; Envelope condition ; High dimensions ; Large scale ; Manifold ; Microeconomics ; Parallel computation ; Perturbation ; Precomputation ; Projection ; Semiconductor industry ; Smolyak ; Stochastic simulation ; Supercomputers ; Value function iteration</subject><ispartof>Handbook of Computational Economics, 2014, Vol.3, p.325-477</ispartof><rights>2014 Elsevier B.V.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-171d3f7108aabe83e3e4cc09b570ca1f487cd6c75f508e56e59f165cf96558983</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/1589018-l.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/B978-0-444-52980-0.00007-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>127,146,779,780,784,793,3459,3550,11288,25353,27925,45810,45995</link.rule.ids></links><search><contributor>Judd, Kenneth L</contributor><contributor>Schmedders, Karl</contributor><creatorcontrib>Maliar, Lilia</creatorcontrib><creatorcontrib>Maliar, Serguei</creatorcontrib><title>Numerical Methods for Large-Scale Dynamic Economic Models</title><title>Handbook of Computational Economics</title><description>We survey numerical methods that are tractable in dynamic economic models with a finite, large number of continuous state variables. (Examples of such models are new Keynesian models, life-cycle models, heterogeneous-agents models, asset-pricing models, multisector models, multicountry models, and climate change models.) First, we describe the ingredients that help us to reduce the cost of global solution methods. These are efficient nonproduct techniques for interpolating and approximating functions (Smolyak, stochastic simulation, and ε-distinguishable set grids), accurate low-cost monomial integration formulas, derivative-free solvers, and numerically stable regression methods. Second, we discuss endogenous grid and envelope condition methods that reduce the cost and increase accuracy of value function iteration. Third, we show precomputation techniques that construct solution manifolds for some models’ variables outside the main iterative cycle. Fourth, we review techniques that increase the accuracy of perturbation methods: a change of variables and a hybrid of local and global solutions. Finally, we show examples of parallel computation using multiple CPUs and GPUs including applications on a supercomputer. We illustrate the performance of the surveyed methods using a multiagent model. Many codes are publicly available.</description><subject>[formula omitted]-distinguishable set</subject><subject>Business mathematics & systems</subject><subject>Curse of dimensionality</subject><subject>Endogenous grid</subject><subject>Envelope condition</subject><subject>High dimensions</subject><subject>Large scale</subject><subject>Manifold</subject><subject>Microeconomics</subject><subject>Parallel computation</subject><subject>Perturbation</subject><subject>Precomputation</subject><subject>Projection</subject><subject>Semiconductor industry</subject><subject>Smolyak</subject><subject>Stochastic simulation</subject><subject>Supercomputers</subject><subject>Value function iteration</subject><issn>1574-0021</issn><isbn>9780444529800</isbn><isbn>0444529802</isbn><isbn>9780080931784</isbn><isbn>0080931782</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2014</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUclOwzAQNWIRFfQHOEXcDTOxHdtHlrJILRyAs-U6ExpIa3BSJP4et2Uus7w3I715jJ0jXCBgdXltteHApZRcldYAhwvIobncY-OMARiwArWR-7s-M7dEOGAjVFpygBKP2MhoFGUJqI_ZuO8_8g1EZbWqRsw-rZeU2uC7YkbDItZ90cRUTH16J_6Sx1Tc_q78sg3FJMRV3BSzWFPXn7LDxnc9jf_zCXu7m7zePPDp8_3jzdWUB1mqgaPGWjQawXg_JyNIkAwB7FxpCB4baXSoq6BVo8CQqkjZBisVGlspZawRJ0zu7n6l-L2mfnA0j_Ez0GpIvgsL_zVQ6h1mMqBxaEsnpMhrZ7u196zB_aTOVVai3GivMni7A7MO-mkpuT60tApUt4nC4OrYOgS3ccFtXHDg8m_d9rm53rrgpPgDHulzCg</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Maliar, Lilia</creator><creator>Maliar, Serguei</creator><general>Elsevier B.V</general><general>Elsevier Science & Technology</general><scope>FFUUA</scope></search><sort><creationdate>20140101</creationdate><title>Numerical Methods for Large-Scale Dynamic Economic Models</title><author>Maliar, Lilia ; Maliar, Serguei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-171d3f7108aabe83e3e4cc09b570ca1f487cd6c75f508e56e59f165cf96558983</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2014</creationdate><topic>[formula omitted]-distinguishable set</topic><topic>Business mathematics & systems</topic><topic>Curse of dimensionality</topic><topic>Endogenous grid</topic><topic>Envelope condition</topic><topic>High dimensions</topic><topic>Large scale</topic><topic>Manifold</topic><topic>Microeconomics</topic><topic>Parallel computation</topic><topic>Perturbation</topic><topic>Precomputation</topic><topic>Projection</topic><topic>Semiconductor industry</topic><topic>Smolyak</topic><topic>Stochastic simulation</topic><topic>Supercomputers</topic><topic>Value function iteration</topic><toplevel>online_resources</toplevel><creatorcontrib>Maliar, Lilia</creatorcontrib><creatorcontrib>Maliar, Serguei</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maliar, Lilia</au><au>Maliar, Serguei</au><au>Judd, Kenneth L</au><au>Schmedders, Karl</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Numerical Methods for Large-Scale Dynamic Economic Models</atitle><btitle>Handbook of Computational Economics</btitle><date>2014-01-01</date><risdate>2014</risdate><volume>3</volume><spage>325</spage><epage>477</epage><pages>325-477</pages><issn>1574-0021</issn><isbn>9780444529800</isbn><isbn>0444529802</isbn><eisbn>9780080931784</eisbn><eisbn>0080931782</eisbn><abstract>We survey numerical methods that are tractable in dynamic economic models with a finite, large number of continuous state variables. (Examples of such models are new Keynesian models, life-cycle models, heterogeneous-agents models, asset-pricing models, multisector models, multicountry models, and climate change models.) First, we describe the ingredients that help us to reduce the cost of global solution methods. These are efficient nonproduct techniques for interpolating and approximating functions (Smolyak, stochastic simulation, and ε-distinguishable set grids), accurate low-cost monomial integration formulas, derivative-free solvers, and numerically stable regression methods. Second, we discuss endogenous grid and envelope condition methods that reduce the cost and increase accuracy of value function iteration. Third, we show precomputation techniques that construct solution manifolds for some models’ variables outside the main iterative cycle. Fourth, we review techniques that increase the accuracy of perturbation methods: a change of variables and a hybrid of local and global solutions. Finally, we show examples of parallel computation using multiple CPUs and GPUs including applications on a supercomputer. We illustrate the performance of the surveyed methods using a multiagent model. Many codes are publicly available.</abstract><cop>The Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/B978-0-444-52980-0.00007-4</doi><oclcid>871322017</oclcid><tpages>153</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-0021 |
ispartof | Handbook of Computational Economics, 2014, Vol.3, p.325-477 |
issn | 1574-0021 |
language | eng |
recordid | cdi_proquest_ebookcentralchapters_1589018_192_343 |
source | ScienceDirect eBooks; O'Reilly Online Learning: Academic/Public Library Edition; Access via ScienceDirect (Elsevier) |
subjects | [formula omitted]-distinguishable set Business mathematics & systems Curse of dimensionality Endogenous grid Envelope condition High dimensions Large scale Manifold Microeconomics Parallel computation Perturbation Precomputation Projection Semiconductor industry Smolyak Stochastic simulation Supercomputers Value function iteration |
title | Numerical Methods for Large-Scale Dynamic Economic Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Numerical%20Methods%20for%20Large-Scale%20Dynamic%20Economic%20Models&rft.btitle=Handbook%20of%20Computational%20Economics&rft.au=Maliar,%20Lilia&rft.date=2014-01-01&rft.volume=3&rft.spage=325&rft.epage=477&rft.pages=325-477&rft.issn=1574-0021&rft.isbn=9780444529800&rft.isbn_list=0444529802&rft_id=info:doi/10.1016/B978-0-444-52980-0.00007-4&rft_dat=%3Cgale_proqu%3ECX6941400016%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780080931784&rft.eisbn_list=0080931782&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC1589018_192_343&rft_id=info:pmid/&rft_galeid=CX6941400016&rft_els_id=B9780444529800000074&rfr_iscdi=true |