Sine Cosine Algorithm for Optimization

This open access book serves as a compact source of information on sine cosine algorithm (SCA) and a foundation for developing and advancing SCA and its applications. SCA is an easy, user-friendly, and strong candidate in the field of metaheuristics algorithms. Despite being a relatively new metaheu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bansal, Jagdish Chand, Bajpai, Prathu, Rawat, Anjali, Nagar, Atulya K
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Bansal, Jagdish Chand
Bajpai, Prathu
Rawat, Anjali
Nagar, Atulya K
description This open access book serves as a compact source of information on sine cosine algorithm (SCA) and a foundation for developing and advancing SCA and its applications. SCA is an easy, user-friendly, and strong candidate in the field of metaheuristics algorithms. Despite being a relatively new metaheuristic algorithm, it has achieved widespread acceptance among researchers due to its easy implementation and robust optimization capabilities. Its effectiveness and advantages have been demonstrated in various applications ranging from machine learning, engineering design, and wireless sensor network to environmental modeling. The book provides a comprehensive account of the SCA, including details of the underlying ideas, the modified versions, various applications, and a working MATLAB code for the basic SCA.
doi_str_mv 10.1007/978-981-19-9722-8
format Book
fullrecord <record><control><sourceid>proquest_oapen</sourceid><recordid>TN_cdi_proquest_ebookcentral_EBC7188573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7188573</sourcerecordid><originalsourceid>FETCH-LOGICAL-a30440-9742cef1efd11ca87d18e6040a6207df7b3515609bbfa47bb522e6ddd149aa1e3</originalsourceid><addsrcrecordid>eNpdTj1PwzAQNUIgoPQHIJZOMAXubCdnDwwlKh9SpQ4gVstpnGJI4-CEAX49icqAmN69d--9O8bOEK4QgK41qUQrTFAnmjhP1B6bDtogoR4Ftf-PH7ITFBnpgXN5xKZd9wYAXAlBko7ZxZNv3CwP3QjzehOi71-3syrE2art_dZ_296H5pQdVLbu3PQXJ-zlbvGcPyTL1f1jPl8mVoCUMPwk-dpV6KoScW0VlahcBhJsxoHKigqRYpqBLorKSiqKlHOXlWWJUluLTkzY5a64jeHj03W9cUUI72vX9NHWZnGbEyqVkhicNztnsK1rTBv91sYvE6w3tS_ibh43IW4MB5MCGORZSiZDwfWQP_-bL4MdD3VGEyklfgDQhmaN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC7188573</pqid></control><display><type>book</type><title>Sine Cosine Algorithm for Optimization</title><source>Springer Books</source><source>SpringerLink Fully Open Access Books</source><source>OAPEN</source><source>DOAB: Directory of Open Access Books</source><creator>Bansal, Jagdish Chand ; Bajpai, Prathu ; Rawat, Anjali ; Nagar, Atulya K</creator><creatorcontrib>Bansal, Jagdish Chand ; Bajpai, Prathu ; Rawat, Anjali ; Nagar, Atulya K</creatorcontrib><description>This open access book serves as a compact source of information on sine cosine algorithm (SCA) and a foundation for developing and advancing SCA and its applications. SCA is an easy, user-friendly, and strong candidate in the field of metaheuristics algorithms. Despite being a relatively new metaheuristic algorithm, it has achieved widespread acceptance among researchers due to its easy implementation and robust optimization capabilities. Its effectiveness and advantages have been demonstrated in various applications ranging from machine learning, engineering design, and wireless sensor network to environmental modeling. The book provides a comprehensive account of the SCA, including details of the underlying ideas, the modified versions, various applications, and a working MATLAB code for the basic SCA.</description><edition>1</edition><identifier>ISBN: 9789811997228</identifier><identifier>ISBN: 9811997225</identifier><identifier>ISBN: 9789811997211</identifier><identifier>ISBN: 9811997217</identifier><identifier>EISBN: 9789811997228</identifier><identifier>EISBN: 9811997225</identifier><identifier>DOI: 10.1007/978-981-19-9722-8</identifier><identifier>OCLC: 1367911924</identifier><language>eng</language><publisher>Singapore: Springer Nature</publisher><subject>Artificial intelligence ; Calculus and mathematical analysis ; Computer science ; Computing and Information Technology ; Mathematics ; Mathematics and Science ; Meta-heuristics ; Numerical analysis ; Numerical Experiments ; Numerical Optimization ; Optimization ; Sine Cosine Algorithms ; Soft Computing</subject><creationdate>2023</creationdate><tpages>108</tpages><format>108</format><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>SpringerBriefs in Applied Sciences and Technology; SpringerBriefs in Computational Intelligence</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,778,782,784,27908,55293,62632</link.rule.ids></links><search><creatorcontrib>Bansal, Jagdish Chand</creatorcontrib><creatorcontrib>Bajpai, Prathu</creatorcontrib><creatorcontrib>Rawat, Anjali</creatorcontrib><creatorcontrib>Nagar, Atulya K</creatorcontrib><title>Sine Cosine Algorithm for Optimization</title><description>This open access book serves as a compact source of information on sine cosine algorithm (SCA) and a foundation for developing and advancing SCA and its applications. SCA is an easy, user-friendly, and strong candidate in the field of metaheuristics algorithms. Despite being a relatively new metaheuristic algorithm, it has achieved widespread acceptance among researchers due to its easy implementation and robust optimization capabilities. Its effectiveness and advantages have been demonstrated in various applications ranging from machine learning, engineering design, and wireless sensor network to environmental modeling. The book provides a comprehensive account of the SCA, including details of the underlying ideas, the modified versions, various applications, and a working MATLAB code for the basic SCA.</description><subject>Artificial intelligence</subject><subject>Calculus and mathematical analysis</subject><subject>Computer science</subject><subject>Computing and Information Technology</subject><subject>Mathematics</subject><subject>Mathematics and Science</subject><subject>Meta-heuristics</subject><subject>Numerical analysis</subject><subject>Numerical Experiments</subject><subject>Numerical Optimization</subject><subject>Optimization</subject><subject>Sine Cosine Algorithms</subject><subject>Soft Computing</subject><isbn>9789811997228</isbn><isbn>9811997225</isbn><isbn>9789811997211</isbn><isbn>9811997217</isbn><isbn>9789811997228</isbn><isbn>9811997225</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2023</creationdate><recordtype>book</recordtype><sourceid>V1H</sourceid><sourceid>A7I</sourceid><recordid>eNpdTj1PwzAQNUIgoPQHIJZOMAXubCdnDwwlKh9SpQ4gVstpnGJI4-CEAX49icqAmN69d--9O8bOEK4QgK41qUQrTFAnmjhP1B6bDtogoR4Ftf-PH7ITFBnpgXN5xKZd9wYAXAlBko7ZxZNv3CwP3QjzehOi71-3syrE2art_dZ_296H5pQdVLbu3PQXJ-zlbvGcPyTL1f1jPl8mVoCUMPwk-dpV6KoScW0VlahcBhJsxoHKigqRYpqBLorKSiqKlHOXlWWJUluLTkzY5a64jeHj03W9cUUI72vX9NHWZnGbEyqVkhicNztnsK1rTBv91sYvE6w3tS_ibh43IW4MB5MCGORZSiZDwfWQP_-bL4MdD3VGEyklfgDQhmaN</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Bansal, Jagdish Chand</creator><creator>Bajpai, Prathu</creator><creator>Rawat, Anjali</creator><creator>Nagar, Atulya K</creator><general>Springer Nature</general><general>Springer</general><scope>V1H</scope><scope>A7I</scope></search><sort><creationdate>2023</creationdate><title>Sine Cosine Algorithm for Optimization</title><author>Bansal, Jagdish Chand ; Bajpai, Prathu ; Rawat, Anjali ; Nagar, Atulya K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a30440-9742cef1efd11ca87d18e6040a6207df7b3515609bbfa47bb522e6ddd149aa1e3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Calculus and mathematical analysis</topic><topic>Computer science</topic><topic>Computing and Information Technology</topic><topic>Mathematics</topic><topic>Mathematics and Science</topic><topic>Meta-heuristics</topic><topic>Numerical analysis</topic><topic>Numerical Experiments</topic><topic>Numerical Optimization</topic><topic>Optimization</topic><topic>Sine Cosine Algorithms</topic><topic>Soft Computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Bansal, Jagdish Chand</creatorcontrib><creatorcontrib>Bajpai, Prathu</creatorcontrib><creatorcontrib>Rawat, Anjali</creatorcontrib><creatorcontrib>Nagar, Atulya K</creatorcontrib><collection>DOAB: Directory of Open Access Books</collection><collection>OAPEN</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bansal, Jagdish Chand</au><au>Bajpai, Prathu</au><au>Rawat, Anjali</au><au>Nagar, Atulya K</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Sine Cosine Algorithm for Optimization</btitle><seriestitle>SpringerBriefs in Applied Sciences and Technology; SpringerBriefs in Computational Intelligence</seriestitle><date>2023</date><risdate>2023</risdate><isbn>9789811997228</isbn><isbn>9811997225</isbn><isbn>9789811997211</isbn><isbn>9811997217</isbn><eisbn>9789811997228</eisbn><eisbn>9811997225</eisbn><abstract>This open access book serves as a compact source of information on sine cosine algorithm (SCA) and a foundation for developing and advancing SCA and its applications. SCA is an easy, user-friendly, and strong candidate in the field of metaheuristics algorithms. Despite being a relatively new metaheuristic algorithm, it has achieved widespread acceptance among researchers due to its easy implementation and robust optimization capabilities. Its effectiveness and advantages have been demonstrated in various applications ranging from machine learning, engineering design, and wireless sensor network to environmental modeling. The book provides a comprehensive account of the SCA, including details of the underlying ideas, the modified versions, various applications, and a working MATLAB code for the basic SCA.</abstract><cop>Singapore</cop><pub>Springer Nature</pub><doi>10.1007/978-981-19-9722-8</doi><oclcid>1367911924</oclcid><tpages>108</tpages><edition>1</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISBN: 9789811997228
ispartof
issn
language eng
recordid cdi_proquest_ebookcentral_EBC7188573
source Springer Books; SpringerLink Fully Open Access Books; OAPEN; DOAB: Directory of Open Access Books
subjects Artificial intelligence
Calculus and mathematical analysis
Computer science
Computing and Information Technology
Mathematics
Mathematics and Science
Meta-heuristics
Numerical analysis
Numerical Experiments
Numerical Optimization
Optimization
Sine Cosine Algorithms
Soft Computing
title Sine Cosine Algorithm for Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_oapen&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Sine%20Cosine%20Algorithm%20for%20Optimization&rft.au=Bansal,%20Jagdish%20Chand&rft.date=2023&rft.isbn=9789811997228&rft.isbn_list=9811997225&rft.isbn_list=9789811997211&rft.isbn_list=9811997217&rft_id=info:doi/10.1007/978-981-19-9722-8&rft_dat=%3Cproquest_oapen%3EEBC7188573%3C/proquest_oapen%3E%3Curl%3E%3C/url%3E&rft.eisbn=9789811997228&rft.eisbn_list=9811997225&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7188573&rft_id=info:pmid/&rfr_iscdi=true