Sine Cosine Algorithm for Optimization
This open access book serves as a compact source of information on sine cosine algorithm (SCA) and a foundation for developing and advancing SCA and its applications. SCA is an easy, user-friendly, and strong candidate in the field of metaheuristics algorithms. Despite being a relatively new metaheu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Bansal, Jagdish Chand Bajpai, Prathu Rawat, Anjali Nagar, Atulya K |
description | This open access book serves as a compact source of information on sine cosine algorithm (SCA) and a foundation for developing and advancing SCA and its applications. SCA is an easy, user-friendly, and strong candidate in the field of metaheuristics algorithms. Despite being a relatively new metaheuristic algorithm, it has achieved widespread acceptance among researchers due to its easy implementation and robust optimization capabilities. Its effectiveness and advantages have been demonstrated in various applications ranging from machine learning, engineering design, and wireless sensor network to environmental modeling. The book provides a comprehensive account of the SCA, including details of the underlying ideas, the modified versions, various applications, and a working MATLAB code for the basic SCA. |
doi_str_mv | 10.1007/978-981-19-9722-8 |
format | Book |
fullrecord | <record><control><sourceid>proquest_oapen</sourceid><recordid>TN_cdi_proquest_ebookcentral_EBC7188573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC7188573</sourcerecordid><originalsourceid>FETCH-LOGICAL-a30440-9742cef1efd11ca87d18e6040a6207df7b3515609bbfa47bb522e6ddd149aa1e3</originalsourceid><addsrcrecordid>eNpdTj1PwzAQNUIgoPQHIJZOMAXubCdnDwwlKh9SpQ4gVstpnGJI4-CEAX49icqAmN69d--9O8bOEK4QgK41qUQrTFAnmjhP1B6bDtogoR4Ftf-PH7ITFBnpgXN5xKZd9wYAXAlBko7ZxZNv3CwP3QjzehOi71-3syrE2art_dZ_296H5pQdVLbu3PQXJ-zlbvGcPyTL1f1jPl8mVoCUMPwk-dpV6KoScW0VlahcBhJsxoHKigqRYpqBLorKSiqKlHOXlWWJUluLTkzY5a64jeHj03W9cUUI72vX9NHWZnGbEyqVkhicNztnsK1rTBv91sYvE6w3tS_ibh43IW4MB5MCGORZSiZDwfWQP_-bL4MdD3VGEyklfgDQhmaN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC7188573</pqid></control><display><type>book</type><title>Sine Cosine Algorithm for Optimization</title><source>Springer Books</source><source>SpringerLink Fully Open Access Books</source><source>OAPEN</source><source>DOAB: Directory of Open Access Books</source><creator>Bansal, Jagdish Chand ; Bajpai, Prathu ; Rawat, Anjali ; Nagar, Atulya K</creator><creatorcontrib>Bansal, Jagdish Chand ; Bajpai, Prathu ; Rawat, Anjali ; Nagar, Atulya K</creatorcontrib><description>This open access book serves as a compact source of information on sine cosine algorithm (SCA) and a foundation for developing and advancing SCA and its applications. SCA is an easy, user-friendly, and strong candidate in the field of metaheuristics algorithms. Despite being a relatively new metaheuristic algorithm, it has achieved widespread acceptance among researchers due to its easy implementation and robust optimization capabilities. Its effectiveness and advantages have been demonstrated in various applications ranging from machine learning, engineering design, and wireless sensor network to environmental modeling. The book provides a comprehensive account of the SCA, including details of the underlying ideas, the modified versions, various applications, and a working MATLAB code for the basic SCA.</description><edition>1</edition><identifier>ISBN: 9789811997228</identifier><identifier>ISBN: 9811997225</identifier><identifier>ISBN: 9789811997211</identifier><identifier>ISBN: 9811997217</identifier><identifier>EISBN: 9789811997228</identifier><identifier>EISBN: 9811997225</identifier><identifier>DOI: 10.1007/978-981-19-9722-8</identifier><identifier>OCLC: 1367911924</identifier><language>eng</language><publisher>Singapore: Springer Nature</publisher><subject>Artificial intelligence ; Calculus and mathematical analysis ; Computer science ; Computing and Information Technology ; Mathematics ; Mathematics and Science ; Meta-heuristics ; Numerical analysis ; Numerical Experiments ; Numerical Optimization ; Optimization ; Sine Cosine Algorithms ; Soft Computing</subject><creationdate>2023</creationdate><tpages>108</tpages><format>108</format><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>SpringerBriefs in Applied Sciences and Technology; SpringerBriefs in Computational Intelligence</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,778,782,784,27908,55293,62632</link.rule.ids></links><search><creatorcontrib>Bansal, Jagdish Chand</creatorcontrib><creatorcontrib>Bajpai, Prathu</creatorcontrib><creatorcontrib>Rawat, Anjali</creatorcontrib><creatorcontrib>Nagar, Atulya K</creatorcontrib><title>Sine Cosine Algorithm for Optimization</title><description>This open access book serves as a compact source of information on sine cosine algorithm (SCA) and a foundation for developing and advancing SCA and its applications. SCA is an easy, user-friendly, and strong candidate in the field of metaheuristics algorithms. Despite being a relatively new metaheuristic algorithm, it has achieved widespread acceptance among researchers due to its easy implementation and robust optimization capabilities. Its effectiveness and advantages have been demonstrated in various applications ranging from machine learning, engineering design, and wireless sensor network to environmental modeling. The book provides a comprehensive account of the SCA, including details of the underlying ideas, the modified versions, various applications, and a working MATLAB code for the basic SCA.</description><subject>Artificial intelligence</subject><subject>Calculus and mathematical analysis</subject><subject>Computer science</subject><subject>Computing and Information Technology</subject><subject>Mathematics</subject><subject>Mathematics and Science</subject><subject>Meta-heuristics</subject><subject>Numerical analysis</subject><subject>Numerical Experiments</subject><subject>Numerical Optimization</subject><subject>Optimization</subject><subject>Sine Cosine Algorithms</subject><subject>Soft Computing</subject><isbn>9789811997228</isbn><isbn>9811997225</isbn><isbn>9789811997211</isbn><isbn>9811997217</isbn><isbn>9789811997228</isbn><isbn>9811997225</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2023</creationdate><recordtype>book</recordtype><sourceid>V1H</sourceid><sourceid>A7I</sourceid><recordid>eNpdTj1PwzAQNUIgoPQHIJZOMAXubCdnDwwlKh9SpQ4gVstpnGJI4-CEAX49icqAmN69d--9O8bOEK4QgK41qUQrTFAnmjhP1B6bDtogoR4Ftf-PH7ITFBnpgXN5xKZd9wYAXAlBko7ZxZNv3CwP3QjzehOi71-3syrE2art_dZ_296H5pQdVLbu3PQXJ-zlbvGcPyTL1f1jPl8mVoCUMPwk-dpV6KoScW0VlahcBhJsxoHKigqRYpqBLorKSiqKlHOXlWWJUluLTkzY5a64jeHj03W9cUUI72vX9NHWZnGbEyqVkhicNztnsK1rTBv91sYvE6w3tS_ibh43IW4MB5MCGORZSiZDwfWQP_-bL4MdD3VGEyklfgDQhmaN</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Bansal, Jagdish Chand</creator><creator>Bajpai, Prathu</creator><creator>Rawat, Anjali</creator><creator>Nagar, Atulya K</creator><general>Springer Nature</general><general>Springer</general><scope>V1H</scope><scope>A7I</scope></search><sort><creationdate>2023</creationdate><title>Sine Cosine Algorithm for Optimization</title><author>Bansal, Jagdish Chand ; Bajpai, Prathu ; Rawat, Anjali ; Nagar, Atulya K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a30440-9742cef1efd11ca87d18e6040a6207df7b3515609bbfa47bb522e6ddd149aa1e3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Calculus and mathematical analysis</topic><topic>Computer science</topic><topic>Computing and Information Technology</topic><topic>Mathematics</topic><topic>Mathematics and Science</topic><topic>Meta-heuristics</topic><topic>Numerical analysis</topic><topic>Numerical Experiments</topic><topic>Numerical Optimization</topic><topic>Optimization</topic><topic>Sine Cosine Algorithms</topic><topic>Soft Computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Bansal, Jagdish Chand</creatorcontrib><creatorcontrib>Bajpai, Prathu</creatorcontrib><creatorcontrib>Rawat, Anjali</creatorcontrib><creatorcontrib>Nagar, Atulya K</creatorcontrib><collection>DOAB: Directory of Open Access Books</collection><collection>OAPEN</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bansal, Jagdish Chand</au><au>Bajpai, Prathu</au><au>Rawat, Anjali</au><au>Nagar, Atulya K</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Sine Cosine Algorithm for Optimization</btitle><seriestitle>SpringerBriefs in Applied Sciences and Technology; SpringerBriefs in Computational Intelligence</seriestitle><date>2023</date><risdate>2023</risdate><isbn>9789811997228</isbn><isbn>9811997225</isbn><isbn>9789811997211</isbn><isbn>9811997217</isbn><eisbn>9789811997228</eisbn><eisbn>9811997225</eisbn><abstract>This open access book serves as a compact source of information on sine cosine algorithm (SCA) and a foundation for developing and advancing SCA and its applications. SCA is an easy, user-friendly, and strong candidate in the field of metaheuristics algorithms. Despite being a relatively new metaheuristic algorithm, it has achieved widespread acceptance among researchers due to its easy implementation and robust optimization capabilities. Its effectiveness and advantages have been demonstrated in various applications ranging from machine learning, engineering design, and wireless sensor network to environmental modeling. The book provides a comprehensive account of the SCA, including details of the underlying ideas, the modified versions, various applications, and a working MATLAB code for the basic SCA.</abstract><cop>Singapore</cop><pub>Springer Nature</pub><doi>10.1007/978-981-19-9722-8</doi><oclcid>1367911924</oclcid><tpages>108</tpages><edition>1</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9789811997228 |
ispartof | |
issn | |
language | eng |
recordid | cdi_proquest_ebookcentral_EBC7188573 |
source | Springer Books; SpringerLink Fully Open Access Books; OAPEN; DOAB: Directory of Open Access Books |
subjects | Artificial intelligence Calculus and mathematical analysis Computer science Computing and Information Technology Mathematics Mathematics and Science Meta-heuristics Numerical analysis Numerical Experiments Numerical Optimization Optimization Sine Cosine Algorithms Soft Computing |
title | Sine Cosine Algorithm for Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_oapen&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Sine%20Cosine%20Algorithm%20for%20Optimization&rft.au=Bansal,%20Jagdish%20Chand&rft.date=2023&rft.isbn=9789811997228&rft.isbn_list=9811997225&rft.isbn_list=9789811997211&rft.isbn_list=9811997217&rft_id=info:doi/10.1007/978-981-19-9722-8&rft_dat=%3Cproquest_oapen%3EEBC7188573%3C/proquest_oapen%3E%3Curl%3E%3C/url%3E&rft.eisbn=9789811997228&rft.eisbn_list=9811997225&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC7188573&rft_id=info:pmid/&rfr_iscdi=true |