A Population Background for Nonparametric Density-Based Clustering
Despite its popularity, it is widely recognized that the investigation of some theoretical aspects of clustering has been relatively sparse. One of the main reasons for this lack of theoretical results is surely the fact that, whereas for other statistical problems the theoretical population goal is...
Gespeichert in:
Veröffentlicht in: | Statistical science 2015-11, Vol.30 (4), p.518-532 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 532 |
---|---|
container_issue | 4 |
container_start_page | 518 |
container_title | Statistical science |
container_volume | 30 |
creator | Chacón, José E. |
description | Despite its popularity, it is widely recognized that the investigation of some theoretical aspects of clustering has been relatively sparse. One of the main reasons for this lack of theoretical results is surely the fact that, whereas for other statistical problems the theoretical population goal is clearly defined (as in regression or classification), for some of the clustering methodologies it is difficult to specify the population goal to which the data-based clustering algorithms should try to get close. This paper aims to provide some insight into the theoretical foundations of clustering by focusing on two main objectives: to provide an explicit formulation for the ideal population goal of the modal clustering methodology, which understands clusters as regions of high density; and to present two new loss functions, applicable in fact to any clustering methodology, to evaluate the performance of a data-based clustering algorithm with respect to the ideal population goal. In particular, it is shown that only mild conditions on a sequence of density estimators are needed to ensure that the sequence of modal clusterings that they induce is consistent. |
doi_str_mv | 10.1214/15-STS526 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_ss_1449670856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24780818</jstor_id><sourcerecordid>24780818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-6ebc096e50b45d2d5839cd278810aab5cc095d79f7f49c7117002ed44b83b99f3</originalsourceid><addsrcrecordid>eNo9kMtqwzAQRUVpoelj0Q8oGLrqwq2elrwqifuE0BaSrIUsycGuY7mSvMjf18UhqwszhzPDBeAGwQeEEX1ELF2tVwxnJ2CGUSZSwSk7BTMoBEkpJvwcXITQQAhZhugMLObJt-uHVsXadclC6Z-td0Nnksr55NN1vfJqZ6OvdfJsu1DHfbpQwZqkaIcQra-77RU4q1Qb7PUhL8Hm9WVdvKfLr7ePYr5MNeEwppktNcwzy2BJmcGGCZJrg7kQCCpVMj1umeF5xSuaa44QhxBbQ2kpSJnnFbkET5O3966xOtpBt7WRva93yu-lU7UsNsvD9BAhSERpnnEoWDYa7o6G38GGKBs3-G58WiLOCMOEUjZS9xOlvQvB2-p4AkH5X7JETE4lj-ztxDYhOn8EMeUCCiTIH1nweFI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753523445</pqid></control><display><type>article</type><title>A Population Background for Nonparametric Density-Based Clustering</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics and Statistics</source><source>Project Euclid Complete</source><source>EZB Electronic Journals Library</source><creator>Chacón, José E.</creator><creatorcontrib>Chacón, José E.</creatorcontrib><description>Despite its popularity, it is widely recognized that the investigation of some theoretical aspects of clustering has been relatively sparse. One of the main reasons for this lack of theoretical results is surely the fact that, whereas for other statistical problems the theoretical population goal is clearly defined (as in regression or classification), for some of the clustering methodologies it is difficult to specify the population goal to which the data-based clustering algorithms should try to get close. This paper aims to provide some insight into the theoretical foundations of clustering by focusing on two main objectives: to provide an explicit formulation for the ideal population goal of the modal clustering methodology, which understands clusters as regions of high density; and to present two new loss functions, applicable in fact to any clustering methodology, to evaluate the performance of a data-based clustering algorithm with respect to the ideal population goal. In particular, it is shown that only mild conditions on a sequence of density estimators are needed to ensure that the sequence of modal clusterings that they induce is consistent.</description><identifier>ISSN: 0883-4237</identifier><identifier>EISSN: 2168-8745</identifier><identifier>DOI: 10.1214/15-STS526</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Algorithms ; Clustering consistency ; distance in measure ; Hausdorff distance ; Mathematical functions ; Mathematical problems ; modal clustering ; Morse theory</subject><ispartof>Statistical science, 2015-11, Vol.30 (4), p.518-532</ispartof><rights>Copyright © 2015 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Nov 2015</rights><rights>Copyright 2015 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-6ebc096e50b45d2d5839cd278810aab5cc095d79f7f49c7117002ed44b83b99f3</citedby><cites>FETCH-LOGICAL-c370t-6ebc096e50b45d2d5839cd278810aab5cc095d79f7f49c7117002ed44b83b99f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24780818$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24780818$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Chacón, José E.</creatorcontrib><title>A Population Background for Nonparametric Density-Based Clustering</title><title>Statistical science</title><description>Despite its popularity, it is widely recognized that the investigation of some theoretical aspects of clustering has been relatively sparse. One of the main reasons for this lack of theoretical results is surely the fact that, whereas for other statistical problems the theoretical population goal is clearly defined (as in regression or classification), for some of the clustering methodologies it is difficult to specify the population goal to which the data-based clustering algorithms should try to get close. This paper aims to provide some insight into the theoretical foundations of clustering by focusing on two main objectives: to provide an explicit formulation for the ideal population goal of the modal clustering methodology, which understands clusters as regions of high density; and to present two new loss functions, applicable in fact to any clustering methodology, to evaluate the performance of a data-based clustering algorithm with respect to the ideal population goal. In particular, it is shown that only mild conditions on a sequence of density estimators are needed to ensure that the sequence of modal clusterings that they induce is consistent.</description><subject>Algorithms</subject><subject>Clustering consistency</subject><subject>distance in measure</subject><subject>Hausdorff distance</subject><subject>Mathematical functions</subject><subject>Mathematical problems</subject><subject>modal clustering</subject><subject>Morse theory</subject><issn>0883-4237</issn><issn>2168-8745</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kMtqwzAQRUVpoelj0Q8oGLrqwq2elrwqifuE0BaSrIUsycGuY7mSvMjf18UhqwszhzPDBeAGwQeEEX1ELF2tVwxnJ2CGUSZSwSk7BTMoBEkpJvwcXITQQAhZhugMLObJt-uHVsXadclC6Z-td0Nnksr55NN1vfJqZ6OvdfJsu1DHfbpQwZqkaIcQra-77RU4q1Qb7PUhL8Hm9WVdvKfLr7ePYr5MNeEwppktNcwzy2BJmcGGCZJrg7kQCCpVMj1umeF5xSuaa44QhxBbQ2kpSJnnFbkET5O3966xOtpBt7WRva93yu-lU7UsNsvD9BAhSERpnnEoWDYa7o6G38GGKBs3-G58WiLOCMOEUjZS9xOlvQvB2-p4AkH5X7JETE4lj-ztxDYhOn8EMeUCCiTIH1nweFI</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Chacón, José E.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>A Population Background for Nonparametric Density-Based Clustering</title><author>Chacón, José E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-6ebc096e50b45d2d5839cd278810aab5cc095d79f7f49c7117002ed44b83b99f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Clustering consistency</topic><topic>distance in measure</topic><topic>Hausdorff distance</topic><topic>Mathematical functions</topic><topic>Mathematical problems</topic><topic>modal clustering</topic><topic>Morse theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chacón, José E.</creatorcontrib><collection>CrossRef</collection><jtitle>Statistical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chacón, José E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Population Background for Nonparametric Density-Based Clustering</atitle><jtitle>Statistical science</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>30</volume><issue>4</issue><spage>518</spage><epage>532</epage><pages>518-532</pages><issn>0883-4237</issn><eissn>2168-8745</eissn><abstract>Despite its popularity, it is widely recognized that the investigation of some theoretical aspects of clustering has been relatively sparse. One of the main reasons for this lack of theoretical results is surely the fact that, whereas for other statistical problems the theoretical population goal is clearly defined (as in regression or classification), for some of the clustering methodologies it is difficult to specify the population goal to which the data-based clustering algorithms should try to get close. This paper aims to provide some insight into the theoretical foundations of clustering by focusing on two main objectives: to provide an explicit formulation for the ideal population goal of the modal clustering methodology, which understands clusters as regions of high density; and to present two new loss functions, applicable in fact to any clustering methodology, to evaluate the performance of a data-based clustering algorithm with respect to the ideal population goal. In particular, it is shown that only mild conditions on a sequence of density estimators are needed to ensure that the sequence of modal clusterings that they induce is consistent.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/15-STS526</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-4237 |
ispartof | Statistical science, 2015-11, Vol.30 (4), p.518-532 |
issn | 0883-4237 2168-8745 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_ss_1449670856 |
source | Jstor Complete Legacy; JSTOR Mathematics and Statistics; Project Euclid Complete; EZB Electronic Journals Library |
subjects | Algorithms Clustering consistency distance in measure Hausdorff distance Mathematical functions Mathematical problems modal clustering Morse theory |
title | A Population Background for Nonparametric Density-Based Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Population%20Background%20for%20Nonparametric%20Density-Based%20Clustering&rft.jtitle=Statistical%20science&rft.au=Chac%C3%B3n,%20Jos%C3%A9%20E.&rft.date=2015-11-01&rft.volume=30&rft.issue=4&rft.spage=518&rft.epage=532&rft.pages=518-532&rft.issn=0883-4237&rft.eissn=2168-8745&rft_id=info:doi/10.1214/15-STS526&rft_dat=%3Cjstor_proje%3E24780818%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753523445&rft_id=info:pmid/&rft_jstor_id=24780818&rfr_iscdi=true |