Connected Spatial Networks over Random Points and a Route-Length Statistic

We review mathematically tractable models for connected networks on random points in the plane, emphasizing the class of proximity graphs which deserves to be better known to applied probabilists and statisticians. We introduce and motivate a particular statistic R measuring shortness of routes in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical science 2010-08, Vol.25 (3), p.275-288
Hauptverfasser: Aldous, David J., Shun, Julian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 288
container_issue 3
container_start_page 275
container_title Statistical science
container_volume 25
creator Aldous, David J.
Shun, Julian
description We review mathematically tractable models for connected networks on random points in the plane, emphasizing the class of proximity graphs which deserves to be better known to applied probabilists and statisticians. We introduce and motivate a particular statistic R measuring shortness of routes in a network. We illustrate, via Monte Carlo in part, the trade-off between normalized network length and R in a one-parameter family of proximity graphs. How close this family comes to the optimal trade-off over all possible networks remains an intriguing open question. The paper is a write-up of a talk developed by the first author during 2007-2009.
doi_str_mv 10.1214/10-sts335
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_ss_1294167960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41058948</jstor_id><sourcerecordid>41058948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-fdbdbe3481d41faf8e0d06942e638e8b0a6d1d30e364568f49100bc37f1370ee3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcPfgAh-OZD9aZJk_RJpPiXorJuzyVtUm3dmpmkit_ejo09He7ld889HITOCVyTmLAbApEPntLkAE1iwmUkBUsO0QSkpBGLqThGJ953AJBwwiboJbN9b-pgNC7WKrRqiV9N-LXuy2P7YxyeqV7bFX63bR88Hges8MwOwUS56T_CJy7CeOZDW5-io0YtvTnb6RQtHu7n2VOUvz0-Z3d5VDOahKjRla4MZZJoRhrVSAMaeMpiw6k0sgLFNdEUDOUs4bJhKQGoaioaQgUYQ6foduu7drbbRB_qZavLtWtXyv2VVrVltsh32514X5I4ZYSLlMPocLl3-B6MD2VnB9ePoUspYpKkIhYjdLWFame9d6bZfyBQbrreaDEvxq5H9mLLdj5YtwcZgUSmTNJ_yUF7Wg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872159727</pqid></control><display><type>article</type><title>Connected Spatial Networks over Random Points and a Route-Length Statistic</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Aldous, David J. ; Shun, Julian</creator><creatorcontrib>Aldous, David J. ; Shun, Julian</creatorcontrib><description>We review mathematically tractable models for connected networks on random points in the plane, emphasizing the class of proximity graphs which deserves to be better known to applied probabilists and statisticians. We introduce and motivate a particular statistic R measuring shortness of routes in a network. We illustrate, via Monte Carlo in part, the trade-off between normalized network length and R in a one-parameter family of proximity graphs. How close this family comes to the optimal trade-off over all possible networks remains an intriguing open question. The paper is a write-up of a talk developed by the first author during 2007-2009.</description><identifier>ISSN: 0883-4237</identifier><identifier>EISSN: 2168-8745</identifier><identifier>DOI: 10.1214/10-sts335</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Cities ; Determinism ; geometric graph ; Geometric planes ; Graphs ; Mathematical models ; Monte Carlo simulation ; Network access lines ; Proximity graph ; random graph ; Roads ; Spacetime ; spatial network ; Spatial points ; Statistics ; Triangulation ; Vertices</subject><ispartof>Statistical science, 2010-08, Vol.25 (3), p.275-288</ispartof><rights>Copyright © 2010 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Aug 2010</rights><rights>Copyright 2010 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-fdbdbe3481d41faf8e0d06942e638e8b0a6d1d30e364568f49100bc37f1370ee3</citedby><cites>FETCH-LOGICAL-c435t-fdbdbe3481d41faf8e0d06942e638e8b0a6d1d30e364568f49100bc37f1370ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41058948$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41058948$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Aldous, David J.</creatorcontrib><creatorcontrib>Shun, Julian</creatorcontrib><title>Connected Spatial Networks over Random Points and a Route-Length Statistic</title><title>Statistical science</title><description>We review mathematically tractable models for connected networks on random points in the plane, emphasizing the class of proximity graphs which deserves to be better known to applied probabilists and statisticians. We introduce and motivate a particular statistic R measuring shortness of routes in a network. We illustrate, via Monte Carlo in part, the trade-off between normalized network length and R in a one-parameter family of proximity graphs. How close this family comes to the optimal trade-off over all possible networks remains an intriguing open question. The paper is a write-up of a talk developed by the first author during 2007-2009.</description><subject>Cities</subject><subject>Determinism</subject><subject>geometric graph</subject><subject>Geometric planes</subject><subject>Graphs</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Network access lines</subject><subject>Proximity graph</subject><subject>random graph</subject><subject>Roads</subject><subject>Spacetime</subject><subject>spatial network</subject><subject>Spatial points</subject><subject>Statistics</subject><subject>Triangulation</subject><subject>Vertices</subject><issn>0883-4237</issn><issn>2168-8745</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOKcPfgAh-OZD9aZJk_RJpPiXorJuzyVtUm3dmpmkit_ejo09He7ld889HITOCVyTmLAbApEPntLkAE1iwmUkBUsO0QSkpBGLqThGJ953AJBwwiboJbN9b-pgNC7WKrRqiV9N-LXuy2P7YxyeqV7bFX63bR88Hges8MwOwUS56T_CJy7CeOZDW5-io0YtvTnb6RQtHu7n2VOUvz0-Z3d5VDOahKjRla4MZZJoRhrVSAMaeMpiw6k0sgLFNdEUDOUs4bJhKQGoaioaQgUYQ6foduu7drbbRB_qZavLtWtXyv2VVrVltsh32514X5I4ZYSLlMPocLl3-B6MD2VnB9ePoUspYpKkIhYjdLWFame9d6bZfyBQbrreaDEvxq5H9mLLdj5YtwcZgUSmTNJ_yUF7Wg</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Aldous, David J.</creator><creator>Shun, Julian</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100801</creationdate><title>Connected Spatial Networks over Random Points and a Route-Length Statistic</title><author>Aldous, David J. ; Shun, Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-fdbdbe3481d41faf8e0d06942e638e8b0a6d1d30e364568f49100bc37f1370ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cities</topic><topic>Determinism</topic><topic>geometric graph</topic><topic>Geometric planes</topic><topic>Graphs</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Network access lines</topic><topic>Proximity graph</topic><topic>random graph</topic><topic>Roads</topic><topic>Spacetime</topic><topic>spatial network</topic><topic>Spatial points</topic><topic>Statistics</topic><topic>Triangulation</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aldous, David J.</creatorcontrib><creatorcontrib>Shun, Julian</creatorcontrib><collection>CrossRef</collection><jtitle>Statistical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aldous, David J.</au><au>Shun, Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connected Spatial Networks over Random Points and a Route-Length Statistic</atitle><jtitle>Statistical science</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>25</volume><issue>3</issue><spage>275</spage><epage>288</epage><pages>275-288</pages><issn>0883-4237</issn><eissn>2168-8745</eissn><abstract>We review mathematically tractable models for connected networks on random points in the plane, emphasizing the class of proximity graphs which deserves to be better known to applied probabilists and statisticians. We introduce and motivate a particular statistic R measuring shortness of routes in a network. We illustrate, via Monte Carlo in part, the trade-off between normalized network length and R in a one-parameter family of proximity graphs. How close this family comes to the optimal trade-off over all possible networks remains an intriguing open question. The paper is a write-up of a talk developed by the first author during 2007-2009.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/10-sts335</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-4237
ispartof Statistical science, 2010-08, Vol.25 (3), p.275-288
issn 0883-4237
2168-8745
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_ss_1294167960
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects Cities
Determinism
geometric graph
Geometric planes
Graphs
Mathematical models
Monte Carlo simulation
Network access lines
Proximity graph
random graph
Roads
Spacetime
spatial network
Spatial points
Statistics
Triangulation
Vertices
title Connected Spatial Networks over Random Points and a Route-Length Statistic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connected%20Spatial%20Networks%20over%20Random%20Points%20and%20a%20Route-Length%20Statistic&rft.jtitle=Statistical%20science&rft.au=Aldous,%20David%20J.&rft.date=2010-08-01&rft.volume=25&rft.issue=3&rft.spage=275&rft.epage=288&rft.pages=275-288&rft.issn=0883-4237&rft.eissn=2168-8745&rft_id=info:doi/10.1214/10-sts335&rft_dat=%3Cjstor_proje%3E41058948%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872159727&rft_id=info:pmid/&rft_jstor_id=41058948&rfr_iscdi=true