NEGATIVE PISOT AND SALEM NUMBERS AS ROOTS OF NEWMAN POLYNOMIALS
A Newman polynomial has all its coefficients in {0, 1} and constant term 1. It is known that every root of a Newman polynomial lies in the slit annulus {z ∈ C : τ−1 < |z| < τ} \ R+, where τ denotes the golden ratio, but not every polynomial having all of its conjugates in this set divides a Ne...
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 2014-01, Vol.44 (1), p.113-138 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | 1 |
container_start_page | 113 |
container_title | The Rocky Mountain journal of mathematics |
container_volume | 44 |
creator | HARE, KEVIN G. MOSSINGHOFF, MICHAEL J. |
description | A Newman polynomial has all its coefficients in {0, 1} and constant term 1. It is known that every root of a Newman polynomial lies in the slit annulus {z ∈ C : τ−1 < |z| < τ} \ R+, where τ denotes the golden ratio, but not every polynomial having all of its conjugates in this set divides a Newman polynomial. We show that every negative Pisot number in (−τ,−1) with no positive conjugates, and every negative Salem number in the same range obtained by using Salem's construction on small negative Pisot numbers, is satisfied by a Newman polynomial. We also construct a number of polynomials having all their conjugates in this slit annulus, but that do not divide any Newman polynomial. Finally, we determine all negative Salem numbers in (−τ,−1) with degree at most 20, and verify that every one of these is satisfied by a Newman polynomial. |
doi_str_mv | 10.1216/RMJ-2014-44-1-113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1401740494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26409302</jstor_id><sourcerecordid>26409302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-79e04635961577b32ff7131bf6fc227ebdbe08a603baf8eff4121f2629e3953a3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_wAshfyCak6TJciVxdrPSj7F2ileh7RJY2eho54X_3o6NXb1wOM97OA9Cj0CfgYF8WSafhFEQRAgCBIBfoRFoERCudHCNRpTygKhAy1t01_cNHVYDzUfoNQ3npoi-QryI8qzAJn3HuYnDBKer5C1c5tjkeJllRY6zGU7D78SkeJHFP2mWRCbO79GNL7e9ezjnGK1mYTH9IHE2j6YmJjWXkwNR2lEh-XAfAqUqzrxXwKHy0teMKVetK0cnpaS8Kv3EeS-GrzyTTDuuA17yMTKn3n3XNq4-uN96u1nbfbfZld2fbcuNna7i8_Qc3a7ZWRAUlKBCi6EDTh111_Z95_wFB2qPFu1g0R4tWiEs2MHiwDydmKY_tN0FYFJQzSnj__bFaUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NEGATIVE PISOT AND SALEM NUMBERS AS ROOTS OF NEWMAN POLYNOMIALS</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics & Statistics</source><creator>HARE, KEVIN G. ; MOSSINGHOFF, MICHAEL J.</creator><creatorcontrib>HARE, KEVIN G. ; MOSSINGHOFF, MICHAEL J.</creatorcontrib><description>A Newman polynomial has all its coefficients in {0, 1} and constant term 1. It is known that every root of a Newman polynomial lies in the slit annulus {z ∈ C : τ−1 < |z| < τ} \ R+, where τ denotes the golden ratio, but not every polynomial having all of its conjugates in this set divides a Newman polynomial. We show that every negative Pisot number in (−τ,−1) with no positive conjugates, and every negative Salem number in the same range obtained by using Salem's construction on small negative Pisot numbers, is satisfied by a Newman polynomial. We also construct a number of polynomials having all their conjugates in this slit annulus, but that do not divide any Newman polynomial. Finally, we determine all negative Salem numbers in (−τ,−1) with degree at most 20, and verify that every one of these is satisfied by a Newman polynomial.</description><identifier>ISSN: 0035-7596</identifier><identifier>EISSN: 1945-3795</identifier><identifier>DOI: 10.1216/RMJ-2014-44-1-113</identifier><language>eng</language><publisher>Rocky Mountain Mathematics Consortium</publisher><subject>11C08 ; 11R06 ; 11Y40 ; Newman polynomials ; Pisot numbers ; Salem numbers</subject><ispartof>The Rocky Mountain journal of mathematics, 2014-01, Vol.44 (1), p.113-138</ispartof><rights>Copyright ©2014 Rocky Mountain Mathematics Consortium</rights><rights>Copyright 2014 Rocky Mountain Mathematics Consortium</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-79e04635961577b32ff7131bf6fc227ebdbe08a603baf8eff4121f2629e3953a3</citedby><cites>FETCH-LOGICAL-c368t-79e04635961577b32ff7131bf6fc227ebdbe08a603baf8eff4121f2629e3953a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26409302$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26409302$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>HARE, KEVIN G.</creatorcontrib><creatorcontrib>MOSSINGHOFF, MICHAEL J.</creatorcontrib><title>NEGATIVE PISOT AND SALEM NUMBERS AS ROOTS OF NEWMAN POLYNOMIALS</title><title>The Rocky Mountain journal of mathematics</title><description>A Newman polynomial has all its coefficients in {0, 1} and constant term 1. It is known that every root of a Newman polynomial lies in the slit annulus {z ∈ C : τ−1 < |z| < τ} \ R+, where τ denotes the golden ratio, but not every polynomial having all of its conjugates in this set divides a Newman polynomial. We show that every negative Pisot number in (−τ,−1) with no positive conjugates, and every negative Salem number in the same range obtained by using Salem's construction on small negative Pisot numbers, is satisfied by a Newman polynomial. We also construct a number of polynomials having all their conjugates in this slit annulus, but that do not divide any Newman polynomial. Finally, we determine all negative Salem numbers in (−τ,−1) with degree at most 20, and verify that every one of these is satisfied by a Newman polynomial.</description><subject>11C08</subject><subject>11R06</subject><subject>11Y40</subject><subject>Newman polynomials</subject><subject>Pisot numbers</subject><subject>Salem numbers</subject><issn>0035-7596</issn><issn>1945-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKc_wAshfyCak6TJciVxdrPSj7F2ileh7RJY2eho54X_3o6NXb1wOM97OA9Cj0CfgYF8WSafhFEQRAgCBIBfoRFoERCudHCNRpTygKhAy1t01_cNHVYDzUfoNQ3npoi-QryI8qzAJn3HuYnDBKer5C1c5tjkeJllRY6zGU7D78SkeJHFP2mWRCbO79GNL7e9ezjnGK1mYTH9IHE2j6YmJjWXkwNR2lEh-XAfAqUqzrxXwKHy0teMKVetK0cnpaS8Kv3EeS-GrzyTTDuuA17yMTKn3n3XNq4-uN96u1nbfbfZld2fbcuNna7i8_Qc3a7ZWRAUlKBCi6EDTh111_Z95_wFB2qPFu1g0R4tWiEs2MHiwDydmKY_tN0FYFJQzSnj__bFaUQ</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>HARE, KEVIN G.</creator><creator>MOSSINGHOFF, MICHAEL J.</creator><general>Rocky Mountain Mathematics Consortium</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140101</creationdate><title>NEGATIVE PISOT AND SALEM NUMBERS AS ROOTS OF NEWMAN POLYNOMIALS</title><author>HARE, KEVIN G. ; MOSSINGHOFF, MICHAEL J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-79e04635961577b32ff7131bf6fc227ebdbe08a603baf8eff4121f2629e3953a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>11C08</topic><topic>11R06</topic><topic>11Y40</topic><topic>Newman polynomials</topic><topic>Pisot numbers</topic><topic>Salem numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HARE, KEVIN G.</creatorcontrib><creatorcontrib>MOSSINGHOFF, MICHAEL J.</creatorcontrib><collection>CrossRef</collection><jtitle>The Rocky Mountain journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HARE, KEVIN G.</au><au>MOSSINGHOFF, MICHAEL J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NEGATIVE PISOT AND SALEM NUMBERS AS ROOTS OF NEWMAN POLYNOMIALS</atitle><jtitle>The Rocky Mountain journal of mathematics</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>44</volume><issue>1</issue><spage>113</spage><epage>138</epage><pages>113-138</pages><issn>0035-7596</issn><eissn>1945-3795</eissn><abstract>A Newman polynomial has all its coefficients in {0, 1} and constant term 1. It is known that every root of a Newman polynomial lies in the slit annulus {z ∈ C : τ−1 < |z| < τ} \ R+, where τ denotes the golden ratio, but not every polynomial having all of its conjugates in this set divides a Newman polynomial. We show that every negative Pisot number in (−τ,−1) with no positive conjugates, and every negative Salem number in the same range obtained by using Salem's construction on small negative Pisot numbers, is satisfied by a Newman polynomial. We also construct a number of polynomials having all their conjugates in this slit annulus, but that do not divide any Newman polynomial. Finally, we determine all negative Salem numbers in (−τ,−1) with degree at most 20, and verify that every one of these is satisfied by a Newman polynomial.</abstract><pub>Rocky Mountain Mathematics Consortium</pub><doi>10.1216/RMJ-2014-44-1-113</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-7596 |
ispartof | The Rocky Mountain journal of mathematics, 2014-01, Vol.44 (1), p.113-138 |
issn | 0035-7596 1945-3795 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1401740494 |
source | Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics |
subjects | 11C08 11R06 11Y40 Newman polynomials Pisot numbers Salem numbers |
title | NEGATIVE PISOT AND SALEM NUMBERS AS ROOTS OF NEWMAN POLYNOMIALS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NEGATIVE%20PISOT%20AND%20SALEM%20NUMBERS%20AS%20ROOTS%20OF%20NEWMAN%20POLYNOMIALS&rft.jtitle=The%20Rocky%20Mountain%20journal%20of%20mathematics&rft.au=HARE,%20KEVIN%20G.&rft.date=2014-01-01&rft.volume=44&rft.issue=1&rft.spage=113&rft.epage=138&rft.pages=113-138&rft.issn=0035-7596&rft.eissn=1945-3795&rft_id=info:doi/10.1216/RMJ-2014-44-1-113&rft_dat=%3Cjstor_proje%3E26409302%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26409302&rfr_iscdi=true |