DOUGLAS RANGE FACTORIZATION THEOREM FOR REGULAR OPERATORS ON HILBERT C-MODULES
In this paper, we aim to extend the Douglas range factorization theorem from the context of Hilbert spaces to the context of regular operators on a Hilbert C*-module. In particular, we show that if t and s are regular operators on a Hilbert C*-module E such that ran(t) ⊆ ran(s) and if s has a genera...
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 2013-01, Vol.43 (5), p.1513-1520 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we aim to extend the Douglas range factorization theorem from the context of Hilbert spaces to the context of regular operators on a Hilbert C*-module. In particular, we show that if t and s are regular operators on a Hilbert C*-module E such that ran(t) ⊆ ran(s) and if s has a generalized inverse s✝, then r = s✝t is a densely defined operator satisfying t = sr. Moreover, if s is boundedly adjointable, then r is closed densely defined and its graph is orthogonally complemented in E ⊕ E, and if t is boundedly adjointable, then r is boundedly adjointable. |
---|---|
ISSN: | 0035-7596 1945-3795 |
DOI: | 10.1216/RMJ-2013-43-5-1513 |