DOUGLAS RANGE FACTORIZATION THEOREM FOR REGULAR OPERATORS ON HILBERT C-MODULES

In this paper, we aim to extend the Douglas range factorization theorem from the context of Hilbert spaces to the context of regular operators on a Hilbert C*-module. In particular, we show that if t and s are regular operators on a Hilbert C*-module E such that ran(t) ⊆ ran(s) and if s has a genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2013-01, Vol.43 (5), p.1513-1520
Hauptverfasser: FOROUGH, MARZIEH, NIKNAM, ASSADOLLAH
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we aim to extend the Douglas range factorization theorem from the context of Hilbert spaces to the context of regular operators on a Hilbert C*-module. In particular, we show that if t and s are regular operators on a Hilbert C*-module E such that ran(t) ⊆ ran(s) and if s has a generalized inverse s✝, then r = s✝t is a densely defined operator satisfying t = sr. Moreover, if s is boundedly adjointable, then r is closed densely defined and its graph is orthogonally complemented in E ⊕ E, and if t is boundedly adjointable, then r is boundedly adjointable.
ISSN:0035-7596
1945-3795
DOI:10.1216/RMJ-2013-43-5-1513