ON THE IMPULSIVE DELAY HEMATOPOIESIS MODEL WITH PERIODIC COEFFICIENTS
In this paper we will consider the nonlinear impulsive delay hematopoiesis model $p'(t) = \frac{{\beta (t)}}{{1 + {p^n}(t - m\omega )}} - \gamma (t)p(t),\,t \ne {t_{k,}}$, $p(t_k^ + ) = (1 + {b_k})p({t_k}),\,k \in N = \{ 1,2, \ldots \} ,$ where n, m ∈ N, β(t), ϒ(t) and ${\Pi _{0 < {t_k} <...
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 2009-01, Vol.39 (5), p.1657-1688 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1688 |
---|---|
container_issue | 5 |
container_start_page | 1657 |
container_title | The Rocky Mountain journal of mathematics |
container_volume | 39 |
creator | SAKER, S.H. ALZABUT, J.O. |
description | In this paper we will consider the nonlinear impulsive delay hematopoiesis model $p'(t) = \frac{{\beta (t)}}{{1 + {p^n}(t - m\omega )}} - \gamma (t)p(t),\,t \ne {t_{k,}}$, $p(t_k^ + ) = (1 + {b_k})p({t_k}),\,k \in N = \{ 1,2, \ldots \} ,$ where n, m ∈ N, β(t), ϒ(t) and ${\Pi _{0 < {t_k} < t}}\left( {1 + {b_k}} \right)$ are positive periodic functions of period ω > 0. We prove that the solutions are bounded and persistent. The persistence implies the survival of the mature cells for a long term. By employing the continuation theorem of coincidence degree, we prove the existence of a positive periodic solution р̅(t). We establish some sufficient conditions for the global attractivity of р̅(t). These conditions imply the absence of any disease in the mammal. Moreover, we obtain some sufficient conditions for the oscillation of all positive solutions about the positive periodic solution р̅(t). These conditions lead to the prevalence of mature cells around the periodic solution. Our results extend and improve some known results in the literature for the autonomous model without impulse. An example is presented to illustrate the main results. |
doi_str_mv | 10.1216/RMJ-2009-39-5-1657 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1255008577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44239606</jstor_id><sourcerecordid>44239606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-f54812a920dbe38c14a7056dba9adc888cb89d2f1065e9b63781b07154bd94493</originalsourceid><addsrcrecordid>eNo9kMtKw0AARQdRsFZ_QBDmB0bn_ViGdGpGkqY0qeJqyBMaWiJJXfj3prR0deHCOYsDwDPBr4QS-bZJPhDF2CBmkEBECnUDZsRwgZgy4hbMMGYCKWHkPXgYxw5jwoVhM2DTFcwjC12y3saZ-7RwYePgG0Y2CfJ0nTqbuQwm6fTCL5dHcG03Ll24EIapXS5d6Owqzx7BXVvsx-bpsnOwXdo8jFCcvrswiFHFFDmiVnBNaGEorsuG6YrwQmEh67IwRV1pratSm5q2BEvRmFIypUmJFRG8rA3nhs1BcPb-DH3XVMfmt9rvav8z7A7F8Of7YufDbXx5LzMcuoMnVAiMtVBqctCzoxr6cRya9ooT7E8x_RTTn2J6Zrzwp5gT9HKGuvHYD1eCc8qMxJL9Az0Ia3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON THE IMPULSIVE DELAY HEMATOPOIESIS MODEL WITH PERIODIC COEFFICIENTS</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>SAKER, S.H. ; ALZABUT, J.O.</creator><creatorcontrib>SAKER, S.H. ; ALZABUT, J.O.</creatorcontrib><description>In this paper we will consider the nonlinear impulsive delay hematopoiesis model $p'(t) = \frac{{\beta (t)}}{{1 + {p^n}(t - m\omega )}} - \gamma (t)p(t),\,t \ne {t_{k,}}$, $p(t_k^ + ) = (1 + {b_k})p({t_k}),\,k \in N = \{ 1,2, \ldots \} ,$ where n, m ∈ N, β(t), ϒ(t) and ${\Pi _{0 < {t_k} < t}}\left( {1 + {b_k}} \right)$ are positive periodic functions of period ω > 0. We prove that the solutions are bounded and persistent. The persistence implies the survival of the mature cells for a long term. By employing the continuation theorem of coincidence degree, we prove the existence of a positive periodic solution р̅(t). We establish some sufficient conditions for the global attractivity of р̅(t). These conditions imply the absence of any disease in the mammal. Moreover, we obtain some sufficient conditions for the oscillation of all positive solutions about the positive periodic solution р̅(t). These conditions lead to the prevalence of mature cells around the periodic solution. Our results extend and improve some known results in the literature for the autonomous model without impulse. An example is presented to illustrate the main results.</description><identifier>ISSN: 0035-7596</identifier><identifier>EISSN: 1945-3795</identifier><identifier>DOI: 10.1216/RMJ-2009-39-5-1657</identifier><language>eng</language><publisher>The Rocky Mountain Mathematics Consortium</publisher><subject>34K11 ; 34K25 ; 92D25 ; Banach space ; Coincidence ; delay ; Differential equations ; Differentials ; Ecological modeling ; existence ; global attractivity ; Hematopoiesis ; hematopoiesis model ; Impulse ; Mathematical models ; Mathematical theorems ; Mathematics ; oscillation ; persistence ; Sufficient conditions</subject><ispartof>The Rocky Mountain journal of mathematics, 2009-01, Vol.39 (5), p.1657-1688</ispartof><rights>Copyright © 2009 Rocky Mountain Mathematics Consortium</rights><rights>Copyright 2009 Rocky Mountain Mathematics Consortium</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-f54812a920dbe38c14a7056dba9adc888cb89d2f1065e9b63781b07154bd94493</citedby><cites>FETCH-LOGICAL-c371t-f54812a920dbe38c14a7056dba9adc888cb89d2f1065e9b63781b07154bd94493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44239606$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44239606$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>SAKER, S.H.</creatorcontrib><creatorcontrib>ALZABUT, J.O.</creatorcontrib><title>ON THE IMPULSIVE DELAY HEMATOPOIESIS MODEL WITH PERIODIC COEFFICIENTS</title><title>The Rocky Mountain journal of mathematics</title><description>In this paper we will consider the nonlinear impulsive delay hematopoiesis model $p'(t) = \frac{{\beta (t)}}{{1 + {p^n}(t - m\omega )}} - \gamma (t)p(t),\,t \ne {t_{k,}}$, $p(t_k^ + ) = (1 + {b_k})p({t_k}),\,k \in N = \{ 1,2, \ldots \} ,$ where n, m ∈ N, β(t), ϒ(t) and ${\Pi _{0 < {t_k} < t}}\left( {1 + {b_k}} \right)$ are positive periodic functions of period ω > 0. We prove that the solutions are bounded and persistent. The persistence implies the survival of the mature cells for a long term. By employing the continuation theorem of coincidence degree, we prove the existence of a positive periodic solution р̅(t). We establish some sufficient conditions for the global attractivity of р̅(t). These conditions imply the absence of any disease in the mammal. Moreover, we obtain some sufficient conditions for the oscillation of all positive solutions about the positive periodic solution р̅(t). These conditions lead to the prevalence of mature cells around the periodic solution. Our results extend and improve some known results in the literature for the autonomous model without impulse. An example is presented to illustrate the main results.</description><subject>34K11</subject><subject>34K25</subject><subject>92D25</subject><subject>Banach space</subject><subject>Coincidence</subject><subject>delay</subject><subject>Differential equations</subject><subject>Differentials</subject><subject>Ecological modeling</subject><subject>existence</subject><subject>global attractivity</subject><subject>Hematopoiesis</subject><subject>hematopoiesis model</subject><subject>Impulse</subject><subject>Mathematical models</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>oscillation</subject><subject>persistence</subject><subject>Sufficient conditions</subject><issn>0035-7596</issn><issn>1945-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKw0AARQdRsFZ_QBDmB0bn_ViGdGpGkqY0qeJqyBMaWiJJXfj3prR0deHCOYsDwDPBr4QS-bZJPhDF2CBmkEBECnUDZsRwgZgy4hbMMGYCKWHkPXgYxw5jwoVhM2DTFcwjC12y3saZ-7RwYePgG0Y2CfJ0nTqbuQwm6fTCL5dHcG03Ll24EIapXS5d6Owqzx7BXVvsx-bpsnOwXdo8jFCcvrswiFHFFDmiVnBNaGEorsuG6YrwQmEh67IwRV1pratSm5q2BEvRmFIypUmJFRG8rA3nhs1BcPb-DH3XVMfmt9rvav8z7A7F8Of7YufDbXx5LzMcuoMnVAiMtVBqctCzoxr6cRya9ooT7E8x_RTTn2J6Zrzwp5gT9HKGuvHYD1eCc8qMxJL9Az0Ia3A</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>SAKER, S.H.</creator><creator>ALZABUT, J.O.</creator><general>The Rocky Mountain Mathematics Consortium</general><general>Rocky Mountain Mathematics Consortium</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090101</creationdate><title>ON THE IMPULSIVE DELAY HEMATOPOIESIS MODEL WITH PERIODIC COEFFICIENTS</title><author>SAKER, S.H. ; ALZABUT, J.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-f54812a920dbe38c14a7056dba9adc888cb89d2f1065e9b63781b07154bd94493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>34K11</topic><topic>34K25</topic><topic>92D25</topic><topic>Banach space</topic><topic>Coincidence</topic><topic>delay</topic><topic>Differential equations</topic><topic>Differentials</topic><topic>Ecological modeling</topic><topic>existence</topic><topic>global attractivity</topic><topic>Hematopoiesis</topic><topic>hematopoiesis model</topic><topic>Impulse</topic><topic>Mathematical models</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>oscillation</topic><topic>persistence</topic><topic>Sufficient conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SAKER, S.H.</creatorcontrib><creatorcontrib>ALZABUT, J.O.</creatorcontrib><collection>CrossRef</collection><jtitle>The Rocky Mountain journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SAKER, S.H.</au><au>ALZABUT, J.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON THE IMPULSIVE DELAY HEMATOPOIESIS MODEL WITH PERIODIC COEFFICIENTS</atitle><jtitle>The Rocky Mountain journal of mathematics</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>39</volume><issue>5</issue><spage>1657</spage><epage>1688</epage><pages>1657-1688</pages><issn>0035-7596</issn><eissn>1945-3795</eissn><abstract>In this paper we will consider the nonlinear impulsive delay hematopoiesis model $p'(t) = \frac{{\beta (t)}}{{1 + {p^n}(t - m\omega )}} - \gamma (t)p(t),\,t \ne {t_{k,}}$, $p(t_k^ + ) = (1 + {b_k})p({t_k}),\,k \in N = \{ 1,2, \ldots \} ,$ where n, m ∈ N, β(t), ϒ(t) and ${\Pi _{0 < {t_k} < t}}\left( {1 + {b_k}} \right)$ are positive periodic functions of period ω > 0. We prove that the solutions are bounded and persistent. The persistence implies the survival of the mature cells for a long term. By employing the continuation theorem of coincidence degree, we prove the existence of a positive periodic solution р̅(t). We establish some sufficient conditions for the global attractivity of р̅(t). These conditions imply the absence of any disease in the mammal. Moreover, we obtain some sufficient conditions for the oscillation of all positive solutions about the positive periodic solution р̅(t). These conditions lead to the prevalence of mature cells around the periodic solution. Our results extend and improve some known results in the literature for the autonomous model without impulse. An example is presented to illustrate the main results.</abstract><pub>The Rocky Mountain Mathematics Consortium</pub><doi>10.1216/RMJ-2009-39-5-1657</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-7596 |
ispartof | The Rocky Mountain journal of mathematics, 2009-01, Vol.39 (5), p.1657-1688 |
issn | 0035-7596 1945-3795 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1255008577 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 34K11 34K25 92D25 Banach space Coincidence delay Differential equations Differentials Ecological modeling existence global attractivity Hematopoiesis hematopoiesis model Impulse Mathematical models Mathematical theorems Mathematics oscillation persistence Sufficient conditions |
title | ON THE IMPULSIVE DELAY HEMATOPOIESIS MODEL WITH PERIODIC COEFFICIENTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20THE%20IMPULSIVE%20DELAY%20HEMATOPOIESIS%20MODEL%20WITH%20PERIODIC%20COEFFICIENTS&rft.jtitle=The%20Rocky%20Mountain%20journal%20of%20mathematics&rft.au=SAKER,%20S.H.&rft.date=2009-01-01&rft.volume=39&rft.issue=5&rft.spage=1657&rft.epage=1688&rft.pages=1657-1688&rft.issn=0035-7596&rft.eissn=1945-3795&rft_id=info:doi/10.1216/RMJ-2009-39-5-1657&rft_dat=%3Cjstor_proje%3E44239606%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44239606&rfr_iscdi=true |