ON THE IMPULSIVE DELAY HEMATOPOIESIS MODEL WITH PERIODIC COEFFICIENTS

In this paper we will consider the nonlinear impulsive delay hematopoiesis model $p'(t) = \frac{{\beta (t)}}{{1 + {p^n}(t - m\omega )}} - \gamma (t)p(t),\,t \ne {t_{k,}}$, $p(t_k^ + ) = (1 + {b_k})p({t_k}),\,k \in N = \{ 1,2, \ldots \} ,$ where n, m ∈ N, β(t), ϒ(t) and ${\Pi _{0 < {t_k} <...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2009-01, Vol.39 (5), p.1657-1688
Hauptverfasser: SAKER, S.H., ALZABUT, J.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1688
container_issue 5
container_start_page 1657
container_title The Rocky Mountain journal of mathematics
container_volume 39
creator SAKER, S.H.
ALZABUT, J.O.
description In this paper we will consider the nonlinear impulsive delay hematopoiesis model $p'(t) = \frac{{\beta (t)}}{{1 + {p^n}(t - m\omega )}} - \gamma (t)p(t),\,t \ne {t_{k,}}$, $p(t_k^ + ) = (1 + {b_k})p({t_k}),\,k \in N = \{ 1,2, \ldots \} ,$ where n, m ∈ N, β(t), ϒ(t) and ${\Pi _{0 < {t_k} < t}}\left( {1 + {b_k}} \right)$ are positive periodic functions of period ω > 0. We prove that the solutions are bounded and persistent. The persistence implies the survival of the mature cells for a long term. By employing the continuation theorem of coincidence degree, we prove the existence of a positive periodic solution р̅(t). We establish some sufficient conditions for the global attractivity of р̅(t). These conditions imply the absence of any disease in the mammal. Moreover, we obtain some sufficient conditions for the oscillation of all positive solutions about the positive periodic solution р̅(t). These conditions lead to the prevalence of mature cells around the periodic solution. Our results extend and improve some known results in the literature for the autonomous model without impulse. An example is presented to illustrate the main results.
doi_str_mv 10.1216/RMJ-2009-39-5-1657
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1255008577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44239606</jstor_id><sourcerecordid>44239606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-f54812a920dbe38c14a7056dba9adc888cb89d2f1065e9b63781b07154bd94493</originalsourceid><addsrcrecordid>eNo9kMtKw0AARQdRsFZ_QBDmB0bn_ViGdGpGkqY0qeJqyBMaWiJJXfj3prR0deHCOYsDwDPBr4QS-bZJPhDF2CBmkEBECnUDZsRwgZgy4hbMMGYCKWHkPXgYxw5jwoVhM2DTFcwjC12y3saZ-7RwYePgG0Y2CfJ0nTqbuQwm6fTCL5dHcG03Ll24EIapXS5d6Owqzx7BXVvsx-bpsnOwXdo8jFCcvrswiFHFFDmiVnBNaGEorsuG6YrwQmEh67IwRV1pratSm5q2BEvRmFIypUmJFRG8rA3nhs1BcPb-DH3XVMfmt9rvav8z7A7F8Of7YufDbXx5LzMcuoMnVAiMtVBqctCzoxr6cRya9ooT7E8x_RTTn2J6Zrzwp5gT9HKGuvHYD1eCc8qMxJL9Az0Ia3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON THE IMPULSIVE DELAY HEMATOPOIESIS MODEL WITH PERIODIC COEFFICIENTS</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>SAKER, S.H. ; ALZABUT, J.O.</creator><creatorcontrib>SAKER, S.H. ; ALZABUT, J.O.</creatorcontrib><description>In this paper we will consider the nonlinear impulsive delay hematopoiesis model $p'(t) = \frac{{\beta (t)}}{{1 + {p^n}(t - m\omega )}} - \gamma (t)p(t),\,t \ne {t_{k,}}$, $p(t_k^ + ) = (1 + {b_k})p({t_k}),\,k \in N = \{ 1,2, \ldots \} ,$ where n, m ∈ N, β(t), ϒ(t) and ${\Pi _{0 &lt; {t_k} &lt; t}}\left( {1 + {b_k}} \right)$ are positive periodic functions of period ω &gt; 0. We prove that the solutions are bounded and persistent. The persistence implies the survival of the mature cells for a long term. By employing the continuation theorem of coincidence degree, we prove the existence of a positive periodic solution р̅(t). We establish some sufficient conditions for the global attractivity of р̅(t). These conditions imply the absence of any disease in the mammal. Moreover, we obtain some sufficient conditions for the oscillation of all positive solutions about the positive periodic solution р̅(t). These conditions lead to the prevalence of mature cells around the periodic solution. Our results extend and improve some known results in the literature for the autonomous model without impulse. An example is presented to illustrate the main results.</description><identifier>ISSN: 0035-7596</identifier><identifier>EISSN: 1945-3795</identifier><identifier>DOI: 10.1216/RMJ-2009-39-5-1657</identifier><language>eng</language><publisher>The Rocky Mountain Mathematics Consortium</publisher><subject>34K11 ; 34K25 ; 92D25 ; Banach space ; Coincidence ; delay ; Differential equations ; Differentials ; Ecological modeling ; existence ; global attractivity ; Hematopoiesis ; hematopoiesis model ; Impulse ; Mathematical models ; Mathematical theorems ; Mathematics ; oscillation ; persistence ; Sufficient conditions</subject><ispartof>The Rocky Mountain journal of mathematics, 2009-01, Vol.39 (5), p.1657-1688</ispartof><rights>Copyright © 2009 Rocky Mountain Mathematics Consortium</rights><rights>Copyright 2009 Rocky Mountain Mathematics Consortium</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-f54812a920dbe38c14a7056dba9adc888cb89d2f1065e9b63781b07154bd94493</citedby><cites>FETCH-LOGICAL-c371t-f54812a920dbe38c14a7056dba9adc888cb89d2f1065e9b63781b07154bd94493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44239606$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44239606$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>SAKER, S.H.</creatorcontrib><creatorcontrib>ALZABUT, J.O.</creatorcontrib><title>ON THE IMPULSIVE DELAY HEMATOPOIESIS MODEL WITH PERIODIC COEFFICIENTS</title><title>The Rocky Mountain journal of mathematics</title><description>In this paper we will consider the nonlinear impulsive delay hematopoiesis model $p'(t) = \frac{{\beta (t)}}{{1 + {p^n}(t - m\omega )}} - \gamma (t)p(t),\,t \ne {t_{k,}}$, $p(t_k^ + ) = (1 + {b_k})p({t_k}),\,k \in N = \{ 1,2, \ldots \} ,$ where n, m ∈ N, β(t), ϒ(t) and ${\Pi _{0 &lt; {t_k} &lt; t}}\left( {1 + {b_k}} \right)$ are positive periodic functions of period ω &gt; 0. We prove that the solutions are bounded and persistent. The persistence implies the survival of the mature cells for a long term. By employing the continuation theorem of coincidence degree, we prove the existence of a positive periodic solution р̅(t). We establish some sufficient conditions for the global attractivity of р̅(t). These conditions imply the absence of any disease in the mammal. Moreover, we obtain some sufficient conditions for the oscillation of all positive solutions about the positive periodic solution р̅(t). These conditions lead to the prevalence of mature cells around the periodic solution. Our results extend and improve some known results in the literature for the autonomous model without impulse. An example is presented to illustrate the main results.</description><subject>34K11</subject><subject>34K25</subject><subject>92D25</subject><subject>Banach space</subject><subject>Coincidence</subject><subject>delay</subject><subject>Differential equations</subject><subject>Differentials</subject><subject>Ecological modeling</subject><subject>existence</subject><subject>global attractivity</subject><subject>Hematopoiesis</subject><subject>hematopoiesis model</subject><subject>Impulse</subject><subject>Mathematical models</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>oscillation</subject><subject>persistence</subject><subject>Sufficient conditions</subject><issn>0035-7596</issn><issn>1945-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKw0AARQdRsFZ_QBDmB0bn_ViGdGpGkqY0qeJqyBMaWiJJXfj3prR0deHCOYsDwDPBr4QS-bZJPhDF2CBmkEBECnUDZsRwgZgy4hbMMGYCKWHkPXgYxw5jwoVhM2DTFcwjC12y3saZ-7RwYePgG0Y2CfJ0nTqbuQwm6fTCL5dHcG03Ll24EIapXS5d6Owqzx7BXVvsx-bpsnOwXdo8jFCcvrswiFHFFDmiVnBNaGEorsuG6YrwQmEh67IwRV1pratSm5q2BEvRmFIypUmJFRG8rA3nhs1BcPb-DH3XVMfmt9rvav8z7A7F8Of7YufDbXx5LzMcuoMnVAiMtVBqctCzoxr6cRya9ooT7E8x_RTTn2J6Zrzwp5gT9HKGuvHYD1eCc8qMxJL9Az0Ia3A</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>SAKER, S.H.</creator><creator>ALZABUT, J.O.</creator><general>The Rocky Mountain Mathematics Consortium</general><general>Rocky Mountain Mathematics Consortium</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090101</creationdate><title>ON THE IMPULSIVE DELAY HEMATOPOIESIS MODEL WITH PERIODIC COEFFICIENTS</title><author>SAKER, S.H. ; ALZABUT, J.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-f54812a920dbe38c14a7056dba9adc888cb89d2f1065e9b63781b07154bd94493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>34K11</topic><topic>34K25</topic><topic>92D25</topic><topic>Banach space</topic><topic>Coincidence</topic><topic>delay</topic><topic>Differential equations</topic><topic>Differentials</topic><topic>Ecological modeling</topic><topic>existence</topic><topic>global attractivity</topic><topic>Hematopoiesis</topic><topic>hematopoiesis model</topic><topic>Impulse</topic><topic>Mathematical models</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>oscillation</topic><topic>persistence</topic><topic>Sufficient conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SAKER, S.H.</creatorcontrib><creatorcontrib>ALZABUT, J.O.</creatorcontrib><collection>CrossRef</collection><jtitle>The Rocky Mountain journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SAKER, S.H.</au><au>ALZABUT, J.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON THE IMPULSIVE DELAY HEMATOPOIESIS MODEL WITH PERIODIC COEFFICIENTS</atitle><jtitle>The Rocky Mountain journal of mathematics</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>39</volume><issue>5</issue><spage>1657</spage><epage>1688</epage><pages>1657-1688</pages><issn>0035-7596</issn><eissn>1945-3795</eissn><abstract>In this paper we will consider the nonlinear impulsive delay hematopoiesis model $p'(t) = \frac{{\beta (t)}}{{1 + {p^n}(t - m\omega )}} - \gamma (t)p(t),\,t \ne {t_{k,}}$, $p(t_k^ + ) = (1 + {b_k})p({t_k}),\,k \in N = \{ 1,2, \ldots \} ,$ where n, m ∈ N, β(t), ϒ(t) and ${\Pi _{0 &lt; {t_k} &lt; t}}\left( {1 + {b_k}} \right)$ are positive periodic functions of period ω &gt; 0. We prove that the solutions are bounded and persistent. The persistence implies the survival of the mature cells for a long term. By employing the continuation theorem of coincidence degree, we prove the existence of a positive periodic solution р̅(t). We establish some sufficient conditions for the global attractivity of р̅(t). These conditions imply the absence of any disease in the mammal. Moreover, we obtain some sufficient conditions for the oscillation of all positive solutions about the positive periodic solution р̅(t). These conditions lead to the prevalence of mature cells around the periodic solution. Our results extend and improve some known results in the literature for the autonomous model without impulse. An example is presented to illustrate the main results.</abstract><pub>The Rocky Mountain Mathematics Consortium</pub><doi>10.1216/RMJ-2009-39-5-1657</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-7596
ispartof The Rocky Mountain journal of mathematics, 2009-01, Vol.39 (5), p.1657-1688
issn 0035-7596
1945-3795
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1255008577
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 34K11
34K25
92D25
Banach space
Coincidence
delay
Differential equations
Differentials
Ecological modeling
existence
global attractivity
Hematopoiesis
hematopoiesis model
Impulse
Mathematical models
Mathematical theorems
Mathematics
oscillation
persistence
Sufficient conditions
title ON THE IMPULSIVE DELAY HEMATOPOIESIS MODEL WITH PERIODIC COEFFICIENTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20THE%20IMPULSIVE%20DELAY%20HEMATOPOIESIS%20MODEL%20WITH%20PERIODIC%20COEFFICIENTS&rft.jtitle=The%20Rocky%20Mountain%20journal%20of%20mathematics&rft.au=SAKER,%20S.H.&rft.date=2009-01-01&rft.volume=39&rft.issue=5&rft.spage=1657&rft.epage=1688&rft.pages=1657-1688&rft.issn=0035-7596&rft.eissn=1945-3795&rft_id=info:doi/10.1216/RMJ-2009-39-5-1657&rft_dat=%3Cjstor_proje%3E44239606%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44239606&rfr_iscdi=true