A TOPOLOGICAL APPROACH TO MORITA EQUIVALENCE FOR RINGS WITH LOCAL UNITS
In [1] and [3] a theory of Morita equivalence has recently been developed for certain not necessarily unital rings called rings with local units. In this article we prove that the special Horn-sets which figure in the description of equivalence functors are actually the sets of continuous homomorphi...
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 1992, Vol.22 (2), p.405-416 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 416 |
---|---|
container_issue | 2 |
container_start_page | 405 |
container_title | The Rocky Mountain journal of mathematics |
container_volume | 22 |
creator | ABRAMS, G.D. ÁNH, P.N. MÁRKI, L. |
description | In [1] and [3] a theory of Morita equivalence has recently been developed for certain not necessarily unital rings called rings with local units. In this article we prove that the special Horn-sets which figure in the description of equivalence functors are actually the sets of continuous homomorphisms from a locally projective generator (endowed with a suitable topology) into discrete modules. The main result of this paper says that two rings with local units which fulfill a topological condition of projectivity are Morita equivalent if and only if suitable matrix rings over them are isomorphic to each other. |
doi_str_mv | 10.1216/rmjm/1181072737 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1181072737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44237467</jstor_id><sourcerecordid>44237467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-154aaff0b008614a2df19a2b8a82f0cf33867a94c26b59fd27e308cd59b327113</originalsourceid><addsrcrecordid>eNptkM9rwjAAhcPYYM7tvNMg_0BnfjbNMZSqhc642m7HkqYNWJRK6g7771Us7rLTg8f7vsMD4BWjd0xwOPP7bj_DOMJIEEHFHZhgyXhAheT3YIIQ5YHgMnwET8PQIYQZl3QCFgoWeq0zvUhjlUG1XudaxctzCT90nhYKJp9l-qWyZBUncK5zmKerxQZ-p8USZvrClKu02DyDB2d2Q_sy5hSU86SIl8FoDiwN0THAnBnjHKoRikLMDGkclobUkYmIQ9ZRGoXCSGZJWHPpGiJaiiLbcFlTIjCmU6Cu3oPvu9Ye2x-72zbVwW_3xv9WvdlWcZmN7RiXZ6q_Z86O2dVhfT8MvnU3HKPq8uU_xNuV6IZj729zxggVLBT0BLkEa2I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A TOPOLOGICAL APPROACH TO MORITA EQUIVALENCE FOR RINGS WITH LOCAL UNITS</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>ABRAMS, G.D. ; ÁNH, P.N. ; MÁRKI, L.</creator><creatorcontrib>ABRAMS, G.D. ; ÁNH, P.N. ; MÁRKI, L.</creatorcontrib><description>In [1] and [3] a theory of Morita equivalence has recently been developed for certain not necessarily unital rings called rings with local units. In this article we prove that the special Horn-sets which figure in the description of equivalence functors are actually the sets of continuous homomorphisms from a locally projective generator (endowed with a suitable topology) into discrete modules. The main result of this paper says that two rings with local units which fulfill a topological condition of projectivity are Morita equivalent if and only if suitable matrix rings over them are isomorphic to each other.</description><identifier>ISSN: 0035-7596</identifier><identifier>EISSN: 1945-3795</identifier><identifier>DOI: 10.1216/rmjm/1181072737</identifier><language>eng</language><publisher>The Rocky Mountain Mathematics Consortium</publisher><subject>16A42 ; 16A89 ; Algebraic topology ; Equivalence relation ; Functors ; Homomorphisms ; Mathematical rings ; Topological spaces ; Topological theorems ; Topological vector spaces ; Topology ; Vector spaces</subject><ispartof>The Rocky Mountain journal of mathematics, 1992, Vol.22 (2), p.405-416</ispartof><rights>Copyright © 1992 Rocky Mountain Mathematics Consortium</rights><rights>Copyright 1992 Rocky Mountain Mathematics Consortium</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-154aaff0b008614a2df19a2b8a82f0cf33867a94c26b59fd27e308cd59b327113</citedby><cites>FETCH-LOGICAL-c360t-154aaff0b008614a2df19a2b8a82f0cf33867a94c26b59fd27e308cd59b327113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44237467$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44237467$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,4024,27923,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>ABRAMS, G.D.</creatorcontrib><creatorcontrib>ÁNH, P.N.</creatorcontrib><creatorcontrib>MÁRKI, L.</creatorcontrib><title>A TOPOLOGICAL APPROACH TO MORITA EQUIVALENCE FOR RINGS WITH LOCAL UNITS</title><title>The Rocky Mountain journal of mathematics</title><description>In [1] and [3] a theory of Morita equivalence has recently been developed for certain not necessarily unital rings called rings with local units. In this article we prove that the special Horn-sets which figure in the description of equivalence functors are actually the sets of continuous homomorphisms from a locally projective generator (endowed with a suitable topology) into discrete modules. The main result of this paper says that two rings with local units which fulfill a topological condition of projectivity are Morita equivalent if and only if suitable matrix rings over them are isomorphic to each other.</description><subject>16A42</subject><subject>16A89</subject><subject>Algebraic topology</subject><subject>Equivalence relation</subject><subject>Functors</subject><subject>Homomorphisms</subject><subject>Mathematical rings</subject><subject>Topological spaces</subject><subject>Topological theorems</subject><subject>Topological vector spaces</subject><subject>Topology</subject><subject>Vector spaces</subject><issn>0035-7596</issn><issn>1945-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNptkM9rwjAAhcPYYM7tvNMg_0BnfjbNMZSqhc642m7HkqYNWJRK6g7771Us7rLTg8f7vsMD4BWjd0xwOPP7bj_DOMJIEEHFHZhgyXhAheT3YIIQ5YHgMnwET8PQIYQZl3QCFgoWeq0zvUhjlUG1XudaxctzCT90nhYKJp9l-qWyZBUncK5zmKerxQZ-p8USZvrClKu02DyDB2d2Q_sy5hSU86SIl8FoDiwN0THAnBnjHKoRikLMDGkclobUkYmIQ9ZRGoXCSGZJWHPpGiJaiiLbcFlTIjCmU6Cu3oPvu9Ye2x-72zbVwW_3xv9WvdlWcZmN7RiXZ6q_Z86O2dVhfT8MvnU3HKPq8uU_xNuV6IZj729zxggVLBT0BLkEa2I</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>ABRAMS, G.D.</creator><creator>ÁNH, P.N.</creator><creator>MÁRKI, L.</creator><general>The Rocky Mountain Mathematics Consortium</general><general>Rocky Mountain Mathematics Consortium</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1992</creationdate><title>A TOPOLOGICAL APPROACH TO MORITA EQUIVALENCE FOR RINGS WITH LOCAL UNITS</title><author>ABRAMS, G.D. ; ÁNH, P.N. ; MÁRKI, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-154aaff0b008614a2df19a2b8a82f0cf33867a94c26b59fd27e308cd59b327113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>16A42</topic><topic>16A89</topic><topic>Algebraic topology</topic><topic>Equivalence relation</topic><topic>Functors</topic><topic>Homomorphisms</topic><topic>Mathematical rings</topic><topic>Topological spaces</topic><topic>Topological theorems</topic><topic>Topological vector spaces</topic><topic>Topology</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ABRAMS, G.D.</creatorcontrib><creatorcontrib>ÁNH, P.N.</creatorcontrib><creatorcontrib>MÁRKI, L.</creatorcontrib><collection>CrossRef</collection><jtitle>The Rocky Mountain journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ABRAMS, G.D.</au><au>ÁNH, P.N.</au><au>MÁRKI, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A TOPOLOGICAL APPROACH TO MORITA EQUIVALENCE FOR RINGS WITH LOCAL UNITS</atitle><jtitle>The Rocky Mountain journal of mathematics</jtitle><date>1992</date><risdate>1992</risdate><volume>22</volume><issue>2</issue><spage>405</spage><epage>416</epage><pages>405-416</pages><issn>0035-7596</issn><eissn>1945-3795</eissn><abstract>In [1] and [3] a theory of Morita equivalence has recently been developed for certain not necessarily unital rings called rings with local units. In this article we prove that the special Horn-sets which figure in the description of equivalence functors are actually the sets of continuous homomorphisms from a locally projective generator (endowed with a suitable topology) into discrete modules. The main result of this paper says that two rings with local units which fulfill a topological condition of projectivity are Morita equivalent if and only if suitable matrix rings over them are isomorphic to each other.</abstract><pub>The Rocky Mountain Mathematics Consortium</pub><doi>10.1216/rmjm/1181072737</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-7596 |
ispartof | The Rocky Mountain journal of mathematics, 1992, Vol.22 (2), p.405-416 |
issn | 0035-7596 1945-3795 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1181072737 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 16A42 16A89 Algebraic topology Equivalence relation Functors Homomorphisms Mathematical rings Topological spaces Topological theorems Topological vector spaces Topology Vector spaces |
title | A TOPOLOGICAL APPROACH TO MORITA EQUIVALENCE FOR RINGS WITH LOCAL UNITS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20TOPOLOGICAL%20APPROACH%20TO%20MORITA%20EQUIVALENCE%20FOR%20RINGS%20WITH%20LOCAL%20UNITS&rft.jtitle=The%20Rocky%20Mountain%20journal%20of%20mathematics&rft.au=ABRAMS,%20G.D.&rft.date=1992&rft.volume=22&rft.issue=2&rft.spage=405&rft.epage=416&rft.pages=405-416&rft.issn=0035-7596&rft.eissn=1945-3795&rft_id=info:doi/10.1216/rmjm/1181072737&rft_dat=%3Cjstor_proje%3E44237467%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44237467&rfr_iscdi=true |