THE DISTRIBUTION OF RELATIVELY r-PRIME INTEGERS IN RESIDUE CLASSES
If 1 is the only r-th power which is a divisor of m₁, m₂, . . . , mk, then m₁, m₂, . . . , mk, are said to be relatively r-prime. If ā = (a₁, a₂,..., ak) is a k-tuple of nonnegative integers, h is a positive integer and x is a positive real number, let Q(x; ā, h, r, k) denote the number of k-tuples...
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 1992, Vol.22 (4), p.1473-1482 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1482 |
---|---|
container_issue | 4 |
container_start_page | 1473 |
container_title | The Rocky Mountain journal of mathematics |
container_volume | 22 |
creator | NYMANN, J.E. |
description | If 1 is the only r-th power which is a divisor of m₁, m₂, . . . , mk, then m₁, m₂, . . . , mk, are said to be relatively r-prime. If ā = (a₁, a₂,..., ak) is a k-tuple of nonnegative integers, h is a positive integer and x is a positive real number, let Q(x; ā, h, r, k) denote the number of k-tuples of positive integers (m₁, m₂, . . . , mk) for which 1 ≤ mi ≤ x, mi ≡ ai (mod h), i = 1,2 , . . . , k and m₁, m₂ , . . . , mk are relatively r-prime. An asymptotic formula with 0-estimate for Q(x; ā, h, r, k) is determined. Special cases of this estimate give earlier estimates for relatively prime integers and r-free integers. |
doi_str_mv | 10.1216/rmjm/1181072668 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1181072668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44237518</jstor_id><sourcerecordid>44237518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bac160ccefb47fdbeda8fd7e396f4af79fe3efb287318a918043c84b99149f53</originalsourceid><addsrcrecordid>eNptkMFrwjAYxcPYYM7tvNOg_0BnviZtkmOtUQOdjrYOdiptmoBFqaTu4H-_iuIuO72P773fOzyEXgG_QwDRxO3b_QSAA2ZBFPE7NAJBQ58wEd6jEcYk9Fkookf01PctxkBDQUZoWiylN1N5kanpplDrlbeee5lM40J9yfTbc_5npj6kp1aFXMgsH47BztVsI70kjfNc5s_owVa73rxcdYyKuSySpZ-uFyqJU18TiI5-XWmIsNbG1pTZpjZNxW3DDBGRpZVlwhoyeAFnBHglgGNKNKe1EECFDckYxZfag-tao4_mR--2TXlw233lTmVXbctkk16_VzlvUv5tMnRMLh3adX3vjL3hgMvziv8Qbxei7Y-du8UpDQgLgZNf3AFrdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE DISTRIBUTION OF RELATIVELY r-PRIME INTEGERS IN RESIDUE CLASSES</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics & Statistics</source><creator>NYMANN, J.E.</creator><creatorcontrib>NYMANN, J.E.</creatorcontrib><description>If 1 is the only r-th power which is a divisor of m₁, m₂, . . . , mk, then m₁, m₂, . . . , mk, are said to be relatively r-prime. If ā = (a₁, a₂,..., ak) is a k-tuple of nonnegative integers, h is a positive integer and x is a positive real number, let Q(x; ā, h, r, k) denote the number of k-tuples of positive integers (m₁, m₂, . . . , mk) for which 1 ≤ mi ≤ x, mi ≡ ai (mod h), i = 1,2 , . . . , k and m₁, m₂ , . . . , mk are relatively r-prime. An asymptotic formula with 0-estimate for Q(x; ā, h, r, k) is determined. Special cases of this estimate give earlier estimates for relatively prime integers and r-free integers.</description><identifier>ISSN: 0035-7596</identifier><identifier>EISSN: 1945-3795</identifier><identifier>DOI: 10.1216/rmjm/1181072668</identifier><language>eng</language><publisher>The Rocky Mountain Mathematics Consortium</publisher><subject>Integers ; Prime numbers</subject><ispartof>The Rocky Mountain journal of mathematics, 1992, Vol.22 (4), p.1473-1482</ispartof><rights>Copyright © 1992 Rocky Mountain Mathematics Consortium</rights><rights>Copyright 1992 Rocky Mountain Mathematics Consortium</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44237518$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44237518$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,4010,27900,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>NYMANN, J.E.</creatorcontrib><title>THE DISTRIBUTION OF RELATIVELY r-PRIME INTEGERS IN RESIDUE CLASSES</title><title>The Rocky Mountain journal of mathematics</title><description>If 1 is the only r-th power which is a divisor of m₁, m₂, . . . , mk, then m₁, m₂, . . . , mk, are said to be relatively r-prime. If ā = (a₁, a₂,..., ak) is a k-tuple of nonnegative integers, h is a positive integer and x is a positive real number, let Q(x; ā, h, r, k) denote the number of k-tuples of positive integers (m₁, m₂, . . . , mk) for which 1 ≤ mi ≤ x, mi ≡ ai (mod h), i = 1,2 , . . . , k and m₁, m₂ , . . . , mk are relatively r-prime. An asymptotic formula with 0-estimate for Q(x; ā, h, r, k) is determined. Special cases of this estimate give earlier estimates for relatively prime integers and r-free integers.</description><subject>Integers</subject><subject>Prime numbers</subject><issn>0035-7596</issn><issn>1945-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNptkMFrwjAYxcPYYM7tvNOg_0BnviZtkmOtUQOdjrYOdiptmoBFqaTu4H-_iuIuO72P773fOzyEXgG_QwDRxO3b_QSAA2ZBFPE7NAJBQ58wEd6jEcYk9Fkookf01PctxkBDQUZoWiylN1N5kanpplDrlbeee5lM40J9yfTbc_5npj6kp1aFXMgsH47BztVsI70kjfNc5s_owVa73rxcdYyKuSySpZ-uFyqJU18TiI5-XWmIsNbG1pTZpjZNxW3DDBGRpZVlwhoyeAFnBHglgGNKNKe1EECFDckYxZfag-tao4_mR--2TXlw233lTmVXbctkk16_VzlvUv5tMnRMLh3adX3vjL3hgMvziv8Qbxei7Y-du8UpDQgLgZNf3AFrdQ</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>NYMANN, J.E.</creator><general>The Rocky Mountain Mathematics Consortium</general><general>Rocky Mountain Mathematics Consortium</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1992</creationdate><title>THE DISTRIBUTION OF RELATIVELY r-PRIME INTEGERS IN RESIDUE CLASSES</title><author>NYMANN, J.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bac160ccefb47fdbeda8fd7e396f4af79fe3efb287318a918043c84b99149f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Integers</topic><topic>Prime numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NYMANN, J.E.</creatorcontrib><collection>CrossRef</collection><jtitle>The Rocky Mountain journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NYMANN, J.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE DISTRIBUTION OF RELATIVELY r-PRIME INTEGERS IN RESIDUE CLASSES</atitle><jtitle>The Rocky Mountain journal of mathematics</jtitle><date>1992</date><risdate>1992</risdate><volume>22</volume><issue>4</issue><spage>1473</spage><epage>1482</epage><pages>1473-1482</pages><issn>0035-7596</issn><eissn>1945-3795</eissn><abstract>If 1 is the only r-th power which is a divisor of m₁, m₂, . . . , mk, then m₁, m₂, . . . , mk, are said to be relatively r-prime. If ā = (a₁, a₂,..., ak) is a k-tuple of nonnegative integers, h is a positive integer and x is a positive real number, let Q(x; ā, h, r, k) denote the number of k-tuples of positive integers (m₁, m₂, . . . , mk) for which 1 ≤ mi ≤ x, mi ≡ ai (mod h), i = 1,2 , . . . , k and m₁, m₂ , . . . , mk are relatively r-prime. An asymptotic formula with 0-estimate for Q(x; ā, h, r, k) is determined. Special cases of this estimate give earlier estimates for relatively prime integers and r-free integers.</abstract><pub>The Rocky Mountain Mathematics Consortium</pub><doi>10.1216/rmjm/1181072668</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-7596 |
ispartof | The Rocky Mountain journal of mathematics, 1992, Vol.22 (4), p.1473-1482 |
issn | 0035-7596 1945-3795 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1181072668 |
source | Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics |
subjects | Integers Prime numbers |
title | THE DISTRIBUTION OF RELATIVELY r-PRIME INTEGERS IN RESIDUE CLASSES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20DISTRIBUTION%20OF%20RELATIVELY%20r-PRIME%20INTEGERS%20IN%20RESIDUE%20CLASSES&rft.jtitle=The%20Rocky%20Mountain%20journal%20of%20mathematics&rft.au=NYMANN,%20J.E.&rft.date=1992&rft.volume=22&rft.issue=4&rft.spage=1473&rft.epage=1482&rft.pages=1473-1482&rft.issn=0035-7596&rft.eissn=1945-3795&rft_id=info:doi/10.1216/rmjm/1181072668&rft_dat=%3Cjstor_proje%3E44237518%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44237518&rfr_iscdi=true |