THE BLOW-UP PROFILE FOR A FAST DIFFUSION EQUATION WITH A NONLINEAR BOUNDARY CONDITION

We study positive solutions of a fast diffusion equation in the half-line with a nonlinear boundary condition, $\left\{ {\begin{array}{*{20}{c}} {{u_t} = {{\left( {{u^m}}\right)}_{xx}}\,\left( {x,t} \right) \in {R_ + } \times \left( {0,T}\right),} \\ { - {{\left( {{u^m}} \right)}_x}\left( {0,t} \rig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2003-03, Vol.33 (1), p.123-146
Hauptverfasser: FERREIRA, RAÚL, DE PABLO, ARTURO, QUIRÓS, FERNANDO, ROSSI, JULIO D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 1
container_start_page 123
container_title The Rocky Mountain journal of mathematics
container_volume 33
creator FERREIRA, RAÚL
DE PABLO, ARTURO
QUIRÓS, FERNANDO
ROSSI, JULIO D.
description We study positive solutions of a fast diffusion equation in the half-line with a nonlinear boundary condition, $\left\{ {\begin{array}{*{20}{c}} {{u_t} = {{\left( {{u^m}}\right)}_{xx}}\,\left( {x,t} \right) \in {R_ + } \times \left( {0,T}\right),} \\ { - {{\left( {{u^m}} \right)}_x}\left( {0,t} \right) = {u^p}\left( {0,t} \right)\,t \in \left( {0,T} \right),} \\ {u\left( {x,0} \right) = {u_0}\left( x \right)\,x \in {R_{ + ,}}} \\ \end{array} } \right.$ where 0 < m < 1 and p > 0 are parameters. We describe in terms of p and m when all solutions exist globally in time, when all solutions blow up in a finite time, and when there are both blowing up and global solutions. For blowing up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behavior close to the blow-up time T in terms of a self-similar profile.
doi_str_mv 10.1216/rmjm/1181069989
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1181069989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44238915</jstor_id><sourcerecordid>44238915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-f4210dbfdcd7fb8bbcf188eff5bf1d902e692614787ff861cfd7f44649a8e303</originalsourceid><addsrcrecordid>eNptkMFrgzAUxsPYYF23806DXHZ0TUyiydG2ugpiOquUnUSjAaWdI3aH_fdTKu1lp_d43-_7HnwAPGP0hm3sLMyxPS4w5hg5QnBxA2ZYUGYRV7BbMEOIMMtlwrkHD33fIoQpE2QGsnTjw2Uk91a2hdtEBmHkw0Am0IOBt0vhOgyCbBfKGPofmZeOyz5MN4McyzgKY99L4FJm8dpLPuFKxutwZB7BnS4Off00zTlIAz9dbaxIvocrL7IUEehkaWpjVJW6UpWrS16WSmPOa61ZqXElkF07wnYwdbmrNXew0gNHqUNFwWuCyBx459hv07W1OtU_6tBU-bdpjoX5zbuiyVdZNF2nMdaUX2saMhbnDGW6vje1vtgxysdi_3G8Tl-LXhUHbYov1fRXG0MuwS4buJcz1_anzlx0Sm3CBWbkD4p4fPE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE BLOW-UP PROFILE FOR A FAST DIFFUSION EQUATION WITH A NONLINEAR BOUNDARY CONDITION</title><source>Project Euclid</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>FERREIRA, RAÚL ; DE PABLO, ARTURO ; QUIRÓS, FERNANDO ; ROSSI, JULIO D.</creator><creatorcontrib>FERREIRA, RAÚL ; DE PABLO, ARTURO ; QUIRÓS, FERNANDO ; ROSSI, JULIO D.</creatorcontrib><description>We study positive solutions of a fast diffusion equation in the half-line with a nonlinear boundary condition, $\left\{ {\begin{array}{*{20}{c}} {{u_t} = {{\left( {{u^m}}\right)}_{xx}}\,\left( {x,t} \right) \in {R_ + } \times \left( {0,T}\right),} \\ { - {{\left( {{u^m}} \right)}_x}\left( {0,t} \right) = {u^p}\left( {0,t} \right)\,t \in \left( {0,T} \right),} \\ {u\left( {x,0} \right) = {u_0}\left( x \right)\,x \in {R_{ + ,}}} \\ \end{array} } \right.$ where 0 &lt; m &lt; 1 and p &gt; 0 are parameters. We describe in terms of p and m when all solutions exist globally in time, when all solutions blow up in a finite time, and when there are both blowing up and global solutions. For blowing up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behavior close to the blow-up time T in terms of a self-similar profile.</description><identifier>ISSN: 0035-7596</identifier><identifier>EISSN: 1945-3795</identifier><identifier>DOI: 10.1216/rmjm/1181069989</identifier><identifier>CODEN: RMJMAE</identifier><language>eng</language><publisher>Tempe, AZ: The Rocky Mountain Mathematics Consortium</publisher><subject>35B35 ; 35B40 ; 35K65 ; asymptotic behavior ; Blow-up ; Boundary conditions ; Critical points ; Differential equations ; Exact sciences and technology ; fast diffusion equation ; Heat equation ; Infinity ; Mathematical analysis ; Mathematical theorems ; Mathematics ; nonlinear boundary conditions ; Partial differential equations ; Porous materials ; Quadrants ; Sciences and techniques of general use ; Trajectories</subject><ispartof>The Rocky Mountain journal of mathematics, 2003-03, Vol.33 (1), p.123-146</ispartof><rights>Copyright © 2003 Rocky Mountain Mathematics Consortium</rights><rights>2004 INIST-CNRS</rights><rights>Copyright 2003 Rocky Mountain Mathematics Consortium</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-f4210dbfdcd7fb8bbcf188eff5bf1d902e692614787ff861cfd7f44649a8e303</citedby><cites>FETCH-LOGICAL-c390t-f4210dbfdcd7fb8bbcf188eff5bf1d902e692614787ff861cfd7f44649a8e303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44238915$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44238915$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15073175$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FERREIRA, RAÚL</creatorcontrib><creatorcontrib>DE PABLO, ARTURO</creatorcontrib><creatorcontrib>QUIRÓS, FERNANDO</creatorcontrib><creatorcontrib>ROSSI, JULIO D.</creatorcontrib><title>THE BLOW-UP PROFILE FOR A FAST DIFFUSION EQUATION WITH A NONLINEAR BOUNDARY CONDITION</title><title>The Rocky Mountain journal of mathematics</title><description>We study positive solutions of a fast diffusion equation in the half-line with a nonlinear boundary condition, $\left\{ {\begin{array}{*{20}{c}} {{u_t} = {{\left( {{u^m}}\right)}_{xx}}\,\left( {x,t} \right) \in {R_ + } \times \left( {0,T}\right),} \\ { - {{\left( {{u^m}} \right)}_x}\left( {0,t} \right) = {u^p}\left( {0,t} \right)\,t \in \left( {0,T} \right),} \\ {u\left( {x,0} \right) = {u_0}\left( x \right)\,x \in {R_{ + ,}}} \\ \end{array} } \right.$ where 0 &lt; m &lt; 1 and p &gt; 0 are parameters. We describe in terms of p and m when all solutions exist globally in time, when all solutions blow up in a finite time, and when there are both blowing up and global solutions. For blowing up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behavior close to the blow-up time T in terms of a self-similar profile.</description><subject>35B35</subject><subject>35B40</subject><subject>35K65</subject><subject>asymptotic behavior</subject><subject>Blow-up</subject><subject>Boundary conditions</subject><subject>Critical points</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>fast diffusion equation</subject><subject>Heat equation</subject><subject>Infinity</subject><subject>Mathematical analysis</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>nonlinear boundary conditions</subject><subject>Partial differential equations</subject><subject>Porous materials</subject><subject>Quadrants</subject><subject>Sciences and techniques of general use</subject><subject>Trajectories</subject><issn>0035-7596</issn><issn>1945-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNptkMFrgzAUxsPYYF23806DXHZ0TUyiydG2ugpiOquUnUSjAaWdI3aH_fdTKu1lp_d43-_7HnwAPGP0hm3sLMyxPS4w5hg5QnBxA2ZYUGYRV7BbMEOIMMtlwrkHD33fIoQpE2QGsnTjw2Uk91a2hdtEBmHkw0Am0IOBt0vhOgyCbBfKGPofmZeOyz5MN4McyzgKY99L4FJm8dpLPuFKxutwZB7BnS4Off00zTlIAz9dbaxIvocrL7IUEehkaWpjVJW6UpWrS16WSmPOa61ZqXElkF07wnYwdbmrNXew0gNHqUNFwWuCyBx459hv07W1OtU_6tBU-bdpjoX5zbuiyVdZNF2nMdaUX2saMhbnDGW6vje1vtgxysdi_3G8Tl-LXhUHbYov1fRXG0MuwS4buJcz1_anzlx0Sm3CBWbkD4p4fPE</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>FERREIRA, RAÚL</creator><creator>DE PABLO, ARTURO</creator><creator>QUIRÓS, FERNANDO</creator><creator>ROSSI, JULIO D.</creator><general>The Rocky Mountain Mathematics Consortium</general><general>Rocky Mountain Mathematics Consortium</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030301</creationdate><title>THE BLOW-UP PROFILE FOR A FAST DIFFUSION EQUATION WITH A NONLINEAR BOUNDARY CONDITION</title><author>FERREIRA, RAÚL ; DE PABLO, ARTURO ; QUIRÓS, FERNANDO ; ROSSI, JULIO D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-f4210dbfdcd7fb8bbcf188eff5bf1d902e692614787ff861cfd7f44649a8e303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>35B35</topic><topic>35B40</topic><topic>35K65</topic><topic>asymptotic behavior</topic><topic>Blow-up</topic><topic>Boundary conditions</topic><topic>Critical points</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>fast diffusion equation</topic><topic>Heat equation</topic><topic>Infinity</topic><topic>Mathematical analysis</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>nonlinear boundary conditions</topic><topic>Partial differential equations</topic><topic>Porous materials</topic><topic>Quadrants</topic><topic>Sciences and techniques of general use</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FERREIRA, RAÚL</creatorcontrib><creatorcontrib>DE PABLO, ARTURO</creatorcontrib><creatorcontrib>QUIRÓS, FERNANDO</creatorcontrib><creatorcontrib>ROSSI, JULIO D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Rocky Mountain journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FERREIRA, RAÚL</au><au>DE PABLO, ARTURO</au><au>QUIRÓS, FERNANDO</au><au>ROSSI, JULIO D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE BLOW-UP PROFILE FOR A FAST DIFFUSION EQUATION WITH A NONLINEAR BOUNDARY CONDITION</atitle><jtitle>The Rocky Mountain journal of mathematics</jtitle><date>2003-03-01</date><risdate>2003</risdate><volume>33</volume><issue>1</issue><spage>123</spage><epage>146</epage><pages>123-146</pages><issn>0035-7596</issn><eissn>1945-3795</eissn><coden>RMJMAE</coden><abstract>We study positive solutions of a fast diffusion equation in the half-line with a nonlinear boundary condition, $\left\{ {\begin{array}{*{20}{c}} {{u_t} = {{\left( {{u^m}}\right)}_{xx}}\,\left( {x,t} \right) \in {R_ + } \times \left( {0,T}\right),} \\ { - {{\left( {{u^m}} \right)}_x}\left( {0,t} \right) = {u^p}\left( {0,t} \right)\,t \in \left( {0,T} \right),} \\ {u\left( {x,0} \right) = {u_0}\left( x \right)\,x \in {R_{ + ,}}} \\ \end{array} } \right.$ where 0 &lt; m &lt; 1 and p &gt; 0 are parameters. We describe in terms of p and m when all solutions exist globally in time, when all solutions blow up in a finite time, and when there are both blowing up and global solutions. For blowing up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behavior close to the blow-up time T in terms of a self-similar profile.</abstract><cop>Tempe, AZ</cop><pub>The Rocky Mountain Mathematics Consortium</pub><doi>10.1216/rmjm/1181069989</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-7596
ispartof The Rocky Mountain journal of mathematics, 2003-03, Vol.33 (1), p.123-146
issn 0035-7596
1945-3795
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1181069989
source Project Euclid; JSTOR; EZB Electronic Journals Library
subjects 35B35
35B40
35K65
asymptotic behavior
Blow-up
Boundary conditions
Critical points
Differential equations
Exact sciences and technology
fast diffusion equation
Heat equation
Infinity
Mathematical analysis
Mathematical theorems
Mathematics
nonlinear boundary conditions
Partial differential equations
Porous materials
Quadrants
Sciences and techniques of general use
Trajectories
title THE BLOW-UP PROFILE FOR A FAST DIFFUSION EQUATION WITH A NONLINEAR BOUNDARY CONDITION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20BLOW-UP%20PROFILE%20FOR%20A%20FAST%20DIFFUSION%20EQUATION%20WITH%20A%20NONLINEAR%20BOUNDARY%20CONDITION&rft.jtitle=The%20Rocky%20Mountain%20journal%20of%20mathematics&rft.au=FERREIRA,%20RA%C3%9AL&rft.date=2003-03-01&rft.volume=33&rft.issue=1&rft.spage=123&rft.epage=146&rft.pages=123-146&rft.issn=0035-7596&rft.eissn=1945-3795&rft.coden=RMJMAE&rft_id=info:doi/10.1216/rmjm/1181069989&rft_dat=%3Cjstor_proje%3E44238915%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44238915&rfr_iscdi=true