CONTINUED FRACTIONS AND RESTRAINED SEQUENCES OF MÖBIUS MAPS

Modified approximants of a continued fraction are designed to increase the rate of convergence, and these led to the notion of restrained sequences of Möbius transformations. Here we give some analytic and geometric characterizations of restrained sequences and related topics. We also give an exposi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2004-06, Vol.34 (2), p.441-466
Hauptverfasser: BEARDON, A.F., LORENTZEN, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue 2
container_start_page 441
container_title The Rocky Mountain journal of mathematics
container_volume 34
creator BEARDON, A.F.
LORENTZEN, L.
description Modified approximants of a continued fraction are designed to increase the rate of convergence, and these led to the notion of restrained sequences of Möbius transformations. Here we give some analytic and geometric characterizations of restrained sequences and related topics. We also give an expository account of the use of geometry, including hyperbolic geometry, in discussing restrained sequences and continued fractions.
doi_str_mv 10.1216/rmjm/1181069862
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1181069862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44238979</jstor_id><sourcerecordid>44238979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-cf6ca7cdf05ea1fd69dfd54346a3daf6ba8779717ba553610f65c74b2f7a37443</originalsourceid><addsrcrecordid>eNptkMtOg0AYhSdGE2t17cqEF8DOMDcmcYMUlISCclmTYWCSkhKaARd9EV_IF7MNTd24Osn_n-8sPgAeEXxGDmIr03f9CiEXQSZc5lyBBRKE2pgLeg0WEGJqcyrYLbgbxw5CRKjAC_Dip0kRJWWwtsLM84soTXLLS9ZWFuRF5kXJ8ZEHn2WQ-EFupaG1-fl-jcrc2ngf-T240XI3tg_nXIIyDAr_3Y7Tt8j3YlthBidbaaYkV42GtJVIN0w0uqEEEyZxIzWrpcu54IjXklLMENSMKk5qR3OJOSF4Cbx5d2-GrlVT-6V226bam20vzaEa5Lbyy_h8PcdJR_Wn47ixmjeUGcbRtPqCI1idBP5DPM1EN06DudQJcbAruMC_IWhqOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CONTINUED FRACTIONS AND RESTRAINED SEQUENCES OF MÖBIUS MAPS</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>BEARDON, A.F. ; LORENTZEN, L.</creator><creatorcontrib>BEARDON, A.F. ; LORENTZEN, L.</creatorcontrib><description>Modified approximants of a continued fraction are designed to increase the rate of convergence, and these led to the notion of restrained sequences of Möbius transformations. Here we give some analytic and geometric characterizations of restrained sequences and related topics. We also give an expository account of the use of geometry, including hyperbolic geometry, in discussing restrained sequences and continued fractions.</description><identifier>ISSN: 0035-7596</identifier><identifier>EISSN: 1945-3795</identifier><identifier>DOI: 10.1216/rmjm/1181069862</identifier><language>eng</language><publisher>The Rocky Mountain Mathematics Consortium</publisher><subject>Circles ; Continued fractions ; Geometry ; Hyperbolic geometry ; Mathematical sequences ; Mathematical theorems ; Perceptron convergence procedure ; Radius of a sphere</subject><ispartof>The Rocky Mountain journal of mathematics, 2004-06, Vol.34 (2), p.441-466</ispartof><rights>Copyright © 2004 Rocky Mountain Mathematics Consortium</rights><rights>Copyright 2004 Rocky Mountain Mathematics Consortium</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-cf6ca7cdf05ea1fd69dfd54346a3daf6ba8779717ba553610f65c74b2f7a37443</citedby><cites>FETCH-LOGICAL-c360t-cf6ca7cdf05ea1fd69dfd54346a3daf6ba8779717ba553610f65c74b2f7a37443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44238979$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44238979$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>BEARDON, A.F.</creatorcontrib><creatorcontrib>LORENTZEN, L.</creatorcontrib><title>CONTINUED FRACTIONS AND RESTRAINED SEQUENCES OF MÖBIUS MAPS</title><title>The Rocky Mountain journal of mathematics</title><description>Modified approximants of a continued fraction are designed to increase the rate of convergence, and these led to the notion of restrained sequences of Möbius transformations. Here we give some analytic and geometric characterizations of restrained sequences and related topics. We also give an expository account of the use of geometry, including hyperbolic geometry, in discussing restrained sequences and continued fractions.</description><subject>Circles</subject><subject>Continued fractions</subject><subject>Geometry</subject><subject>Hyperbolic geometry</subject><subject>Mathematical sequences</subject><subject>Mathematical theorems</subject><subject>Perceptron convergence procedure</subject><subject>Radius of a sphere</subject><issn>0035-7596</issn><issn>1945-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNptkMtOg0AYhSdGE2t17cqEF8DOMDcmcYMUlISCclmTYWCSkhKaARd9EV_IF7MNTd24Osn_n-8sPgAeEXxGDmIr03f9CiEXQSZc5lyBBRKE2pgLeg0WEGJqcyrYLbgbxw5CRKjAC_Dip0kRJWWwtsLM84soTXLLS9ZWFuRF5kXJ8ZEHn2WQ-EFupaG1-fl-jcrc2ngf-T240XI3tg_nXIIyDAr_3Y7Tt8j3YlthBidbaaYkV42GtJVIN0w0uqEEEyZxIzWrpcu54IjXklLMENSMKk5qR3OJOSF4Cbx5d2-GrlVT-6V226bam20vzaEa5Lbyy_h8PcdJR_Wn47ixmjeUGcbRtPqCI1idBP5DPM1EN06DudQJcbAruMC_IWhqOA</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>BEARDON, A.F.</creator><creator>LORENTZEN, L.</creator><general>The Rocky Mountain Mathematics Consortium</general><general>Rocky Mountain Mathematics Consortium</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040601</creationdate><title>CONTINUED FRACTIONS AND RESTRAINED SEQUENCES OF MÖBIUS MAPS</title><author>BEARDON, A.F. ; LORENTZEN, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-cf6ca7cdf05ea1fd69dfd54346a3daf6ba8779717ba553610f65c74b2f7a37443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Circles</topic><topic>Continued fractions</topic><topic>Geometry</topic><topic>Hyperbolic geometry</topic><topic>Mathematical sequences</topic><topic>Mathematical theorems</topic><topic>Perceptron convergence procedure</topic><topic>Radius of a sphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BEARDON, A.F.</creatorcontrib><creatorcontrib>LORENTZEN, L.</creatorcontrib><collection>CrossRef</collection><jtitle>The Rocky Mountain journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BEARDON, A.F.</au><au>LORENTZEN, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONTINUED FRACTIONS AND RESTRAINED SEQUENCES OF MÖBIUS MAPS</atitle><jtitle>The Rocky Mountain journal of mathematics</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>34</volume><issue>2</issue><spage>441</spage><epage>466</epage><pages>441-466</pages><issn>0035-7596</issn><eissn>1945-3795</eissn><abstract>Modified approximants of a continued fraction are designed to increase the rate of convergence, and these led to the notion of restrained sequences of Möbius transformations. Here we give some analytic and geometric characterizations of restrained sequences and related topics. We also give an expository account of the use of geometry, including hyperbolic geometry, in discussing restrained sequences and continued fractions.</abstract><pub>The Rocky Mountain Mathematics Consortium</pub><doi>10.1216/rmjm/1181069862</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-7596
ispartof The Rocky Mountain journal of mathematics, 2004-06, Vol.34 (2), p.441-466
issn 0035-7596
1945-3795
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1181069862
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects Circles
Continued fractions
Geometry
Hyperbolic geometry
Mathematical sequences
Mathematical theorems
Perceptron convergence procedure
Radius of a sphere
title CONTINUED FRACTIONS AND RESTRAINED SEQUENCES OF MÖBIUS MAPS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONTINUED%20FRACTIONS%20AND%20RESTRAINED%20SEQUENCES%20OF%20M%C3%96BIUS%20MAPS&rft.jtitle=The%20Rocky%20Mountain%20journal%20of%20mathematics&rft.au=BEARDON,%20A.F.&rft.date=2004-06-01&rft.volume=34&rft.issue=2&rft.spage=441&rft.epage=466&rft.pages=441-466&rft.issn=0035-7596&rft.eissn=1945-3795&rft_id=info:doi/10.1216/rmjm/1181069862&rft_dat=%3Cjstor_proje%3E44238979%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44238979&rfr_iscdi=true