CONTINUED FRACTIONS AND RESTRAINED SEQUENCES OF MÖBIUS MAPS
Modified approximants of a continued fraction are designed to increase the rate of convergence, and these led to the notion of restrained sequences of Möbius transformations. Here we give some analytic and geometric characterizations of restrained sequences and related topics. We also give an exposi...
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 2004-06, Vol.34 (2), p.441-466 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 466 |
---|---|
container_issue | 2 |
container_start_page | 441 |
container_title | The Rocky Mountain journal of mathematics |
container_volume | 34 |
creator | BEARDON, A.F. LORENTZEN, L. |
description | Modified approximants of a continued fraction are designed to increase the rate of convergence, and these led to the notion of restrained sequences of Möbius transformations. Here we give some analytic and geometric characterizations of restrained sequences and related topics. We also give an expository account of the use of geometry, including hyperbolic geometry, in discussing restrained sequences and continued fractions. |
doi_str_mv | 10.1216/rmjm/1181069862 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1181069862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44238979</jstor_id><sourcerecordid>44238979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-cf6ca7cdf05ea1fd69dfd54346a3daf6ba8779717ba553610f65c74b2f7a37443</originalsourceid><addsrcrecordid>eNptkMtOg0AYhSdGE2t17cqEF8DOMDcmcYMUlISCclmTYWCSkhKaARd9EV_IF7MNTd24Osn_n-8sPgAeEXxGDmIr03f9CiEXQSZc5lyBBRKE2pgLeg0WEGJqcyrYLbgbxw5CRKjAC_Dip0kRJWWwtsLM84soTXLLS9ZWFuRF5kXJ8ZEHn2WQ-EFupaG1-fl-jcrc2ngf-T240XI3tg_nXIIyDAr_3Y7Tt8j3YlthBidbaaYkV42GtJVIN0w0uqEEEyZxIzWrpcu54IjXklLMENSMKk5qR3OJOSF4Cbx5d2-GrlVT-6V226bam20vzaEa5Lbyy_h8PcdJR_Wn47ixmjeUGcbRtPqCI1idBP5DPM1EN06DudQJcbAruMC_IWhqOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CONTINUED FRACTIONS AND RESTRAINED SEQUENCES OF MÖBIUS MAPS</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>BEARDON, A.F. ; LORENTZEN, L.</creator><creatorcontrib>BEARDON, A.F. ; LORENTZEN, L.</creatorcontrib><description>Modified approximants of a continued fraction are designed to increase the rate of convergence, and these led to the notion of restrained sequences of Möbius transformations. Here we give some analytic and geometric characterizations of restrained sequences and related topics. We also give an expository account of the use of geometry, including hyperbolic geometry, in discussing restrained sequences and continued fractions.</description><identifier>ISSN: 0035-7596</identifier><identifier>EISSN: 1945-3795</identifier><identifier>DOI: 10.1216/rmjm/1181069862</identifier><language>eng</language><publisher>The Rocky Mountain Mathematics Consortium</publisher><subject>Circles ; Continued fractions ; Geometry ; Hyperbolic geometry ; Mathematical sequences ; Mathematical theorems ; Perceptron convergence procedure ; Radius of a sphere</subject><ispartof>The Rocky Mountain journal of mathematics, 2004-06, Vol.34 (2), p.441-466</ispartof><rights>Copyright © 2004 Rocky Mountain Mathematics Consortium</rights><rights>Copyright 2004 Rocky Mountain Mathematics Consortium</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-cf6ca7cdf05ea1fd69dfd54346a3daf6ba8779717ba553610f65c74b2f7a37443</citedby><cites>FETCH-LOGICAL-c360t-cf6ca7cdf05ea1fd69dfd54346a3daf6ba8779717ba553610f65c74b2f7a37443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44238979$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44238979$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>BEARDON, A.F.</creatorcontrib><creatorcontrib>LORENTZEN, L.</creatorcontrib><title>CONTINUED FRACTIONS AND RESTRAINED SEQUENCES OF MÖBIUS MAPS</title><title>The Rocky Mountain journal of mathematics</title><description>Modified approximants of a continued fraction are designed to increase the rate of convergence, and these led to the notion of restrained sequences of Möbius transformations. Here we give some analytic and geometric characterizations of restrained sequences and related topics. We also give an expository account of the use of geometry, including hyperbolic geometry, in discussing restrained sequences and continued fractions.</description><subject>Circles</subject><subject>Continued fractions</subject><subject>Geometry</subject><subject>Hyperbolic geometry</subject><subject>Mathematical sequences</subject><subject>Mathematical theorems</subject><subject>Perceptron convergence procedure</subject><subject>Radius of a sphere</subject><issn>0035-7596</issn><issn>1945-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNptkMtOg0AYhSdGE2t17cqEF8DOMDcmcYMUlISCclmTYWCSkhKaARd9EV_IF7MNTd24Osn_n-8sPgAeEXxGDmIr03f9CiEXQSZc5lyBBRKE2pgLeg0WEGJqcyrYLbgbxw5CRKjAC_Dip0kRJWWwtsLM84soTXLLS9ZWFuRF5kXJ8ZEHn2WQ-EFupaG1-fl-jcrc2ngf-T240XI3tg_nXIIyDAr_3Y7Tt8j3YlthBidbaaYkV42GtJVIN0w0uqEEEyZxIzWrpcu54IjXklLMENSMKk5qR3OJOSF4Cbx5d2-GrlVT-6V226bam20vzaEa5Lbyy_h8PcdJR_Wn47ixmjeUGcbRtPqCI1idBP5DPM1EN06DudQJcbAruMC_IWhqOA</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>BEARDON, A.F.</creator><creator>LORENTZEN, L.</creator><general>The Rocky Mountain Mathematics Consortium</general><general>Rocky Mountain Mathematics Consortium</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040601</creationdate><title>CONTINUED FRACTIONS AND RESTRAINED SEQUENCES OF MÖBIUS MAPS</title><author>BEARDON, A.F. ; LORENTZEN, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-cf6ca7cdf05ea1fd69dfd54346a3daf6ba8779717ba553610f65c74b2f7a37443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Circles</topic><topic>Continued fractions</topic><topic>Geometry</topic><topic>Hyperbolic geometry</topic><topic>Mathematical sequences</topic><topic>Mathematical theorems</topic><topic>Perceptron convergence procedure</topic><topic>Radius of a sphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BEARDON, A.F.</creatorcontrib><creatorcontrib>LORENTZEN, L.</creatorcontrib><collection>CrossRef</collection><jtitle>The Rocky Mountain journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BEARDON, A.F.</au><au>LORENTZEN, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONTINUED FRACTIONS AND RESTRAINED SEQUENCES OF MÖBIUS MAPS</atitle><jtitle>The Rocky Mountain journal of mathematics</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>34</volume><issue>2</issue><spage>441</spage><epage>466</epage><pages>441-466</pages><issn>0035-7596</issn><eissn>1945-3795</eissn><abstract>Modified approximants of a continued fraction are designed to increase the rate of convergence, and these led to the notion of restrained sequences of Möbius transformations. Here we give some analytic and geometric characterizations of restrained sequences and related topics. We also give an expository account of the use of geometry, including hyperbolic geometry, in discussing restrained sequences and continued fractions.</abstract><pub>The Rocky Mountain Mathematics Consortium</pub><doi>10.1216/rmjm/1181069862</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-7596 |
ispartof | The Rocky Mountain journal of mathematics, 2004-06, Vol.34 (2), p.441-466 |
issn | 0035-7596 1945-3795 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1181069862 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | Circles Continued fractions Geometry Hyperbolic geometry Mathematical sequences Mathematical theorems Perceptron convergence procedure Radius of a sphere |
title | CONTINUED FRACTIONS AND RESTRAINED SEQUENCES OF MÖBIUS MAPS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONTINUED%20FRACTIONS%20AND%20RESTRAINED%20SEQUENCES%20OF%20M%C3%96BIUS%20MAPS&rft.jtitle=The%20Rocky%20Mountain%20journal%20of%20mathematics&rft.au=BEARDON,%20A.F.&rft.date=2004-06-01&rft.volume=34&rft.issue=2&rft.spage=441&rft.epage=466&rft.pages=441-466&rft.issn=0035-7596&rft.eissn=1945-3795&rft_id=info:doi/10.1216/rmjm/1181069862&rft_dat=%3Cjstor_proje%3E44238979%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44238979&rfr_iscdi=true |