Uniform Differentiability

The concept of uniform differentiability is introduced to characterize sequences of McShane and Henstock equi-integrable functions. [PUBLICATION ABSTRACT]

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Real analysis exchange 2011-01, Vol.37 (2), p.451-462
Hauptverfasser: Benitez, Julius V, Jamil, Ferdinand P, Seng, Chew Tuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 462
container_issue 2
container_start_page 451
container_title Real analysis exchange
container_volume 37
creator Benitez, Julius V
Jamil, Ferdinand P
Seng, Chew Tuan
description The concept of uniform differentiability is introduced to characterize sequences of McShane and Henstock equi-integrable functions. [PUBLICATION ABSTRACT]
format Article
fullrecord <record><control><sourceid>proquest_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_rae_1366030637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2952462811</sourcerecordid><originalsourceid>FETCH-LOGICAL-p170t-b16dfd780531330f9c6bab7ec246085a9bdf23fa040433d910ebd4ae46a3e8fb3</originalsourceid><addsrcrecordid>eNo9js1qhDAURkPpQO1MH6C7QteBG29MdNdif0Hopq4lMTcQcdRGXczbV6h0deDwcfiuWCIKBC5SUVyzBITUfBP6ht3OcweAUkOWsPt6CH6M54eX4D1FGpZgbOjDcjmxgzf9THc7j6x-e_0uP3j19f5ZPld8EhoWboVy3ukcMhSI4ItWWWM1talUkGemsM6n6A1IkIiuEEDWSUNSGaTcWzyyp7_uFMeO2oXWtg-umWI4m3hpRhOasq52uyMaagQqBQgK9ZZ4_E_8rDQvTTeucdhebyvMswykSPEXuC9PYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1338550412</pqid></control><display><type>article</type><title>Uniform Differentiability</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Benitez, Julius V ; Jamil, Ferdinand P ; Seng, Chew Tuan</creator><creatorcontrib>Benitez, Julius V ; Jamil, Ferdinand P ; Seng, Chew Tuan</creatorcontrib><description>The concept of uniform differentiability is introduced to characterize sequences of McShane and Henstock equi-integrable functions. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0147-1937</identifier><identifier>EISSN: 1930-1219</identifier><language>eng</language><publisher>East Lansing: Michigan State University Press</publisher><subject>26A03 ; 26A06 ; 26A24 ; 26A39 ; 26A42 ; equi-integrability ; Integrals ; Mathematical analysis ; Mathematical functions ; McShane integral ; uniformly strongly differentiable</subject><ispartof>Real analysis exchange, 2011-01, Vol.37 (2), p.451-462</ispartof><rights>Copyright Michigan State University Press 2011/2012</rights><rights>Copyright 2011 Michigan State University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,926</link.rule.ids></links><search><creatorcontrib>Benitez, Julius V</creatorcontrib><creatorcontrib>Jamil, Ferdinand P</creatorcontrib><creatorcontrib>Seng, Chew Tuan</creatorcontrib><title>Uniform Differentiability</title><title>Real analysis exchange</title><description>The concept of uniform differentiability is introduced to characterize sequences of McShane and Henstock equi-integrable functions. [PUBLICATION ABSTRACT]</description><subject>26A03</subject><subject>26A06</subject><subject>26A24</subject><subject>26A39</subject><subject>26A42</subject><subject>equi-integrability</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>McShane integral</subject><subject>uniformly strongly differentiable</subject><issn>0147-1937</issn><issn>1930-1219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9js1qhDAURkPpQO1MH6C7QteBG29MdNdif0Hopq4lMTcQcdRGXczbV6h0deDwcfiuWCIKBC5SUVyzBITUfBP6ht3OcweAUkOWsPt6CH6M54eX4D1FGpZgbOjDcjmxgzf9THc7j6x-e_0uP3j19f5ZPld8EhoWboVy3ukcMhSI4ItWWWM1talUkGemsM6n6A1IkIiuEEDWSUNSGaTcWzyyp7_uFMeO2oXWtg-umWI4m3hpRhOasq52uyMaagQqBQgK9ZZ4_E_8rDQvTTeucdhebyvMswykSPEXuC9PYQ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Benitez, Julius V</creator><creator>Jamil, Ferdinand P</creator><creator>Seng, Chew Tuan</creator><general>Michigan State University Press</general><scope>4T-</scope><scope>JQ2</scope></search><sort><creationdate>20110101</creationdate><title>Uniform Differentiability</title><author>Benitez, Julius V ; Jamil, Ferdinand P ; Seng, Chew Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p170t-b16dfd780531330f9c6bab7ec246085a9bdf23fa040433d910ebd4ae46a3e8fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>26A03</topic><topic>26A06</topic><topic>26A24</topic><topic>26A39</topic><topic>26A42</topic><topic>equi-integrability</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>McShane integral</topic><topic>uniformly strongly differentiable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benitez, Julius V</creatorcontrib><creatorcontrib>Jamil, Ferdinand P</creatorcontrib><creatorcontrib>Seng, Chew Tuan</creatorcontrib><collection>Docstoc</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Real analysis exchange</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benitez, Julius V</au><au>Jamil, Ferdinand P</au><au>Seng, Chew Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform Differentiability</atitle><jtitle>Real analysis exchange</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>37</volume><issue>2</issue><spage>451</spage><epage>462</epage><pages>451-462</pages><issn>0147-1937</issn><eissn>1930-1219</eissn><abstract>The concept of uniform differentiability is introduced to characterize sequences of McShane and Henstock equi-integrable functions. [PUBLICATION ABSTRACT]</abstract><cop>East Lansing</cop><pub>Michigan State University Press</pub><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0147-1937
ispartof Real analysis exchange, 2011-01, Vol.37 (2), p.451-462
issn 0147-1937
1930-1219
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_rae_1366030637
source EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 26A03
26A06
26A24
26A39
26A42
equi-integrability
Integrals
Mathematical analysis
Mathematical functions
McShane integral
uniformly strongly differentiable
title Uniform Differentiability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20Differentiability&rft.jtitle=Real%20analysis%20exchange&rft.au=Benitez,%20Julius%20V&rft.date=2011-01-01&rft.volume=37&rft.issue=2&rft.spage=451&rft.epage=462&rft.pages=451-462&rft.issn=0147-1937&rft.eissn=1930-1219&rft_id=info:doi/&rft_dat=%3Cproquest_proje%3E2952462811%3C/proquest_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1338550412&rft_id=info:pmid/&rfr_iscdi=true