HENSTOCK'S VERSION OF ITÔ'S FORMULA

Itô's Formula is the stochastic analogue of the change of variable formula for deterministic integrals. It is a useful tool in dealing with stochastic integration. In this paper, using Henstock's approach, we derive two versions of Itô's Formula. Henstock's or generalized Riemann...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Real analysis exchange 2009-01, Vol.35 (2), p.375-390
Hauptverfasser: Toh, Tin Lam, Chew, Tuan Seng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 2
container_start_page 375
container_title Real analysis exchange
container_volume 35
creator Toh, Tin Lam
Chew, Tuan Seng
description Itô's Formula is the stochastic analogue of the change of variable formula for deterministic integrals. It is a useful tool in dealing with stochastic integration. In this paper, using Henstock's approach, we derive two versions of Itô's Formula. Henstock's or generalized Riemann approach has been successful in giving an alternative definition of stochastic integral, which is more explicit, intuitive and less measure theoretic. Henstock's approach provides a simpler and more direct proof of Itô's Formula, although we do not claim that it is a generalization of the classical results. [PUBLICATION ABSTRACT]
format Article
fullrecord <record><control><sourceid>proquest_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_rae_1285160537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186281521</sourcerecordid><originalsourceid>FETCH-LOGICAL-p169t-d94ebad7a37737a9428c48fc9cdd85db1670e48a06a640cfa9485e4d3a78aa4c3</originalsourceid><addsrcrecordid>eNo9jt9KhEAcRocoyLbeQSLoSphxxvlz1yLaSrbCqt0Ov50ZQdnS1L3oPXqjXiwh6erA4ePwXSCPKIoDEhJ1iTxMmAgWIa7RzTR1GFMmcOShh12yL6sifnks_bfkUGbF3i9SP6t-vheTFofXOt_eoqsGTpO7W7lBdZpU8S7Ii-cs3ubBQLiaA6uYO4IVQIWgAhQLpWGyMcpYKyN7JFxgxyRgDpxh0ywLGTlmKQgJwAzdoKe_7jD2nTOzO5tTa_Uwtu8wfukeWh3X-WpXjOA0CWVEOI6oWBL3_4nPs5tm3fXn8WN5rQWnLGSUKfoLrt1QHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763424349</pqid></control><display><type>article</type><title>HENSTOCK'S VERSION OF ITÔ'S FORMULA</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><creator>Toh, Tin Lam ; Chew, Tuan Seng</creator><creatorcontrib>Toh, Tin Lam ; Chew, Tuan Seng</creatorcontrib><description>Itô's Formula is the stochastic analogue of the change of variable formula for deterministic integrals. It is a useful tool in dealing with stochastic integration. In this paper, using Henstock's approach, we derive two versions of Itô's Formula. Henstock's or generalized Riemann approach has been successful in giving an alternative definition of stochastic integral, which is more explicit, intuitive and less measure theoretic. Henstock's approach provides a simpler and more direct proof of Itô's Formula, although we do not claim that it is a generalization of the classical results. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0147-1937</identifier><identifier>EISSN: 1930-1219</identifier><language>eng</language><publisher>East Lansing: Michigan State University Press</publisher><subject>26A39 ; 60H05 ; generalized Riemann approach ; Henstock's stochastic integral ; Integrals ; It\^o's formula ; Mathematical functions ; Stochastic models ; Theorems ; Theoretical mathematics</subject><ispartof>Real analysis exchange, 2009-01, Vol.35 (2), p.375-390</ispartof><rights>Copyright Michigan State University Press 2009/2010</rights><rights>Copyright 2009 Michigan State University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,921</link.rule.ids></links><search><creatorcontrib>Toh, Tin Lam</creatorcontrib><creatorcontrib>Chew, Tuan Seng</creatorcontrib><title>HENSTOCK'S VERSION OF ITÔ'S FORMULA</title><title>Real analysis exchange</title><description>Itô's Formula is the stochastic analogue of the change of variable formula for deterministic integrals. It is a useful tool in dealing with stochastic integration. In this paper, using Henstock's approach, we derive two versions of Itô's Formula. Henstock's or generalized Riemann approach has been successful in giving an alternative definition of stochastic integral, which is more explicit, intuitive and less measure theoretic. Henstock's approach provides a simpler and more direct proof of Itô's Formula, although we do not claim that it is a generalization of the classical results. [PUBLICATION ABSTRACT]</description><subject>26A39</subject><subject>60H05</subject><subject>generalized Riemann approach</subject><subject>Henstock's stochastic integral</subject><subject>Integrals</subject><subject>It\^o's formula</subject><subject>Mathematical functions</subject><subject>Stochastic models</subject><subject>Theorems</subject><subject>Theoretical mathematics</subject><issn>0147-1937</issn><issn>1930-1219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9jt9KhEAcRocoyLbeQSLoSphxxvlz1yLaSrbCqt0Ov50ZQdnS1L3oPXqjXiwh6erA4ePwXSCPKIoDEhJ1iTxMmAgWIa7RzTR1GFMmcOShh12yL6sifnks_bfkUGbF3i9SP6t-vheTFofXOt_eoqsGTpO7W7lBdZpU8S7Ii-cs3ubBQLiaA6uYO4IVQIWgAhQLpWGyMcpYKyN7JFxgxyRgDpxh0ywLGTlmKQgJwAzdoKe_7jD2nTOzO5tTa_Uwtu8wfukeWh3X-WpXjOA0CWVEOI6oWBL3_4nPs5tm3fXn8WN5rQWnLGSUKfoLrt1QHw</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Toh, Tin Lam</creator><creator>Chew, Tuan Seng</creator><general>Michigan State University Press</general><scope>3V.</scope><scope>4T-</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090101</creationdate><title>HENSTOCK'S VERSION OF ITÔ'S FORMULA</title><author>Toh, Tin Lam ; Chew, Tuan Seng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p169t-d94ebad7a37737a9428c48fc9cdd85db1670e48a06a640cfa9485e4d3a78aa4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>26A39</topic><topic>60H05</topic><topic>generalized Riemann approach</topic><topic>Henstock's stochastic integral</topic><topic>Integrals</topic><topic>It\^o's formula</topic><topic>Mathematical functions</topic><topic>Stochastic models</topic><topic>Theorems</topic><topic>Theoretical mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toh, Tin Lam</creatorcontrib><creatorcontrib>Chew, Tuan Seng</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Real analysis exchange</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toh, Tin Lam</au><au>Chew, Tuan Seng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HENSTOCK'S VERSION OF ITÔ'S FORMULA</atitle><jtitle>Real analysis exchange</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>35</volume><issue>2</issue><spage>375</spage><epage>390</epage><pages>375-390</pages><issn>0147-1937</issn><eissn>1930-1219</eissn><abstract>Itô's Formula is the stochastic analogue of the change of variable formula for deterministic integrals. It is a useful tool in dealing with stochastic integration. In this paper, using Henstock's approach, we derive two versions of Itô's Formula. Henstock's or generalized Riemann approach has been successful in giving an alternative definition of stochastic integral, which is more explicit, intuitive and less measure theoretic. Henstock's approach provides a simpler and more direct proof of Itô's Formula, although we do not claim that it is a generalization of the classical results. [PUBLICATION ABSTRACT]</abstract><cop>East Lansing</cop><pub>Michigan State University Press</pub><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0147-1937
ispartof Real analysis exchange, 2009-01, Vol.35 (2), p.375-390
issn 0147-1937
1930-1219
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_rae_1285160537
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete
subjects 26A39
60H05
generalized Riemann approach
Henstock's stochastic integral
Integrals
It\^o's formula
Mathematical functions
Stochastic models
Theorems
Theoretical mathematics
title HENSTOCK'S VERSION OF ITÔ'S FORMULA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HENSTOCK'S%20VERSION%20OF%20IT%C3%94'S%20FORMULA&rft.jtitle=Real%20analysis%20exchange&rft.au=Toh,%20Tin%20Lam&rft.date=2009-01-01&rft.volume=35&rft.issue=2&rft.spage=375&rft.epage=390&rft.pages=375-390&rft.issn=0147-1937&rft.eissn=1930-1219&rft_id=info:doi/&rft_dat=%3Cproquest_proje%3E2186281521%3C/proquest_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=763424349&rft_id=info:pmid/&rfr_iscdi=true