Dihedral $G$-Hilb via representations of the McKay quiver
[ProQuest: ... denotes formula omitted] For a given finite small binary dihedral group ... we provide an explicit description of the minimal resolution Y of the singularity ... The minimal resolution Y is known to be either the moduli space of G-clusters G-Hilb..., or the equivalent ..., the moduli...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Japan Academy. Series A. Mathematical sciences 2012-05, Vol.88 (5), p.78-83 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83 |
---|---|
container_issue | 5 |
container_start_page | 78 |
container_title | Proceedings of the Japan Academy. Series A. Mathematical sciences |
container_volume | 88 |
creator | Nolla de Celis, Alvaro |
description | [ProQuest: ... denotes formula omitted] For a given finite small binary dihedral group ... we provide an explicit description of the minimal resolution Y of the singularity ... The minimal resolution Y is known to be either the moduli space of G-clusters G-Hilb..., or the equivalent ..., the moduli space of ...-stable quiver representations of the McKay quiver. We use both moduli approaches to give an explicit open cover of Y, by assigning to every distinguished G-graph ... an open set ..., and calculating the explicit equation of ... using the McKay quiver with relations ... |
doi_str_mv | 10.3792/pjaa.88.78 |
format | Article |
fullrecord | <record><control><sourceid>gale_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_pja_1336394842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A299760678</galeid><sourcerecordid>A299760678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-7d7d90fc8f86aaf1dce3f81ade97df268713d5a8fa5ddef0681360897f9a32823</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhnOgEhR66S-IBAdUKYsdZ-3xDbSUD7Gol3K2pvYYHGXjxU5W4t83Kz5EEVI1h9G888x7eKcovnM2E0rXJ-sWcQYwU7BT7DEBsqq5bnaLrzm3bJqZ0nuFPg8P5BJ25dHlUXUVuj_lJmCZaJ0oUz_gEGKfy-jL4YHKW3uDT-XjGDaUDoovHrtM3176fnF38fP34qpa_rq8XpwtK9vAfKiUU04zb8GDRPTcWRIeODrSyvlaguLCzRE8zp0jzyRwIRlo5TWKGmqxX5w--65TbMkONNouOLNOYYXpyUQMZnG3fFFfly0aLoQUuoFma3H8ZvE4Uh7MKmRLXYc9xTEbLhVvGtFI_n-0EVoJyUFN6OEHtI1j6qcsDOdzDkxw9o66x45M6H0cEtqtqTmrtVaSSQUTNfuEmsrRKtjYkw-T_s_Bj-cDm2LOifxbIJyZ7fu3GaABMBP8F1Y7og4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1151803107</pqid></control><display><type>article</type><title>Dihedral $G$-Hilb via representations of the McKay quiver</title><source>Project Euclid Open Access</source><source>Open Access Titles of Japan</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Nolla de Celis, Alvaro</creator><creatorcontrib>Nolla de Celis, Alvaro</creatorcontrib><description>[ProQuest: ... denotes formula omitted] For a given finite small binary dihedral group ... we provide an explicit description of the minimal resolution Y of the singularity ... The minimal resolution Y is known to be either the moduli space of G-clusters G-Hilb..., or the equivalent ..., the moduli space of ...-stable quiver representations of the McKay quiver. We use both moduli approaches to give an explicit open cover of Y, by assigning to every distinguished G-graph ... an open set ..., and calculating the explicit equation of ... using the McKay quiver with relations ...</description><identifier>ISSN: 0386-2194</identifier><identifier>DOI: 10.3792/pjaa.88.78</identifier><language>eng</language><publisher>Ueno Park: The Japan Academy</publisher><subject>14C05 ; 14E15 ; 14E16 ; 16G20 ; Equivalence ; Finite groups ; G-Hilbert scheme ; Graph theory ; Hilbert space ; Mathematical analysis ; McKay correspondence ; quiver representations ; Representations ; Series (mathematics) ; Singularities ; Theorems</subject><ispartof>Proceedings of the Japan Academy. Series A. Mathematical sciences, 2012-05, Vol.88 (5), p.78-83</ispartof><rights>COPYRIGHT 2012 The Japan Academy</rights><rights>Copyright The Japan Academy May 2012</rights><rights>Copyright 2012 The Japan Academy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-7d7d90fc8f86aaf1dce3f81ade97df268713d5a8fa5ddef0681360897f9a32823</citedby><cites>FETCH-LOGICAL-c485t-7d7d90fc8f86aaf1dce3f81ade97df268713d5a8fa5ddef0681360897f9a32823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,882,885,926,27924,27925</link.rule.ids></links><search><creatorcontrib>Nolla de Celis, Alvaro</creatorcontrib><title>Dihedral $G$-Hilb via representations of the McKay quiver</title><title>Proceedings of the Japan Academy. Series A. Mathematical sciences</title><description>[ProQuest: ... denotes formula omitted] For a given finite small binary dihedral group ... we provide an explicit description of the minimal resolution Y of the singularity ... The minimal resolution Y is known to be either the moduli space of G-clusters G-Hilb..., or the equivalent ..., the moduli space of ...-stable quiver representations of the McKay quiver. We use both moduli approaches to give an explicit open cover of Y, by assigning to every distinguished G-graph ... an open set ..., and calculating the explicit equation of ... using the McKay quiver with relations ...</description><subject>14C05</subject><subject>14E15</subject><subject>14E16</subject><subject>16G20</subject><subject>Equivalence</subject><subject>Finite groups</subject><subject>G-Hilbert scheme</subject><subject>Graph theory</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>McKay correspondence</subject><subject>quiver representations</subject><subject>Representations</subject><subject>Series (mathematics)</subject><subject>Singularities</subject><subject>Theorems</subject><issn>0386-2194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1P3DAQhnOgEhR66S-IBAdUKYsdZ-3xDbSUD7Gol3K2pvYYHGXjxU5W4t83Kz5EEVI1h9G888x7eKcovnM2E0rXJ-sWcQYwU7BT7DEBsqq5bnaLrzm3bJqZ0nuFPg8P5BJ25dHlUXUVuj_lJmCZaJ0oUz_gEGKfy-jL4YHKW3uDT-XjGDaUDoovHrtM3176fnF38fP34qpa_rq8XpwtK9vAfKiUU04zb8GDRPTcWRIeODrSyvlaguLCzRE8zp0jzyRwIRlo5TWKGmqxX5w--65TbMkONNouOLNOYYXpyUQMZnG3fFFfly0aLoQUuoFma3H8ZvE4Uh7MKmRLXYc9xTEbLhVvGtFI_n-0EVoJyUFN6OEHtI1j6qcsDOdzDkxw9o66x45M6H0cEtqtqTmrtVaSSQUTNfuEmsrRKtjYkw-T_s_Bj-cDm2LOifxbIJyZ7fu3GaABMBP8F1Y7og4</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Nolla de Celis, Alvaro</creator><general>The Japan Academy</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20120501</creationdate><title>Dihedral $G$-Hilb via representations of the McKay quiver</title><author>Nolla de Celis, Alvaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-7d7d90fc8f86aaf1dce3f81ade97df268713d5a8fa5ddef0681360897f9a32823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>14C05</topic><topic>14E15</topic><topic>14E16</topic><topic>16G20</topic><topic>Equivalence</topic><topic>Finite groups</topic><topic>G-Hilbert scheme</topic><topic>Graph theory</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>McKay correspondence</topic><topic>quiver representations</topic><topic>Representations</topic><topic>Series (mathematics)</topic><topic>Singularities</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nolla de Celis, Alvaro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Japan Academy. Series A. Mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nolla de Celis, Alvaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dihedral $G$-Hilb via representations of the McKay quiver</atitle><jtitle>Proceedings of the Japan Academy. Series A. Mathematical sciences</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>88</volume><issue>5</issue><spage>78</spage><epage>83</epage><pages>78-83</pages><issn>0386-2194</issn><abstract>[ProQuest: ... denotes formula omitted] For a given finite small binary dihedral group ... we provide an explicit description of the minimal resolution Y of the singularity ... The minimal resolution Y is known to be either the moduli space of G-clusters G-Hilb..., or the equivalent ..., the moduli space of ...-stable quiver representations of the McKay quiver. We use both moduli approaches to give an explicit open cover of Y, by assigning to every distinguished G-graph ... an open set ..., and calculating the explicit equation of ... using the McKay quiver with relations ...</abstract><cop>Ueno Park</cop><pub>The Japan Academy</pub><doi>10.3792/pjaa.88.78</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0386-2194 |
ispartof | Proceedings of the Japan Academy. Series A. Mathematical sciences, 2012-05, Vol.88 (5), p.78-83 |
issn | 0386-2194 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_pja_1336394842 |
source | Project Euclid Open Access; Open Access Titles of Japan; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 14C05 14E15 14E16 16G20 Equivalence Finite groups G-Hilbert scheme Graph theory Hilbert space Mathematical analysis McKay correspondence quiver representations Representations Series (mathematics) Singularities Theorems |
title | Dihedral $G$-Hilb via representations of the McKay quiver |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dihedral%20$G$-Hilb%20via%20representations%20of%20the%20McKay%20quiver&rft.jtitle=Proceedings%20of%20the%20Japan%20Academy.%20Series%20A.%20Mathematical%20sciences&rft.au=Nolla%20de%20Celis,%20Alvaro&rft.date=2012-05-01&rft.volume=88&rft.issue=5&rft.spage=78&rft.epage=83&rft.pages=78-83&rft.issn=0386-2194&rft_id=info:doi/10.3792/pjaa.88.78&rft_dat=%3Cgale_proje%3EA299760678%3C/gale_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1151803107&rft_id=info:pmid/&rft_galeid=A299760678&rfr_iscdi=true |