Generalized Laplacians for generalized Poisson-Cauchy transforms on classical domains

We develop a group-theoretic method of generalizing the Laplace-Beltrami operators on the classical domains. In [18], we defined the generalized Poisson-Cauchy transforms on the classical domains. We show that the generalized Poisson-Cauchy transforms give us eigenfunctions of the generalized Laplac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Japan Academy. Series A. Mathematical sciences 2006-12, Vol.82 (9), p.167-172
Hauptverfasser: Imamura, Eisuke, Okamoto, Kiyosato, Tsukamoto, Michiroh, Yamamori, Atsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 9
container_start_page 167
container_title Proceedings of the Japan Academy. Series A. Mathematical sciences
container_volume 82
creator Imamura, Eisuke
Okamoto, Kiyosato
Tsukamoto, Michiroh
Yamamori, Atsushi
description We develop a group-theoretic method of generalizing the Laplace-Beltrami operators on the classical domains. In [18], we defined the generalized Poisson-Cauchy transforms on the classical domains. We show that the generalized Poisson-Cauchy transforms give us eigenfunctions of the generalized Laplacians defined in this paper.
doi_str_mv 10.3792/pjaa.82.167
format Article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_pja_1165244966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3792_pjaa_82_167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-13a75825758ec545fde9257bfcf185a92e385d68cf18365549737e49b4de4cf93</originalsourceid><addsrcrecordid>eNpNULtOwzAU9QASpTDxA95RSvyMvYEiaJEiwUBn69axwVEaR3Y7lK8nVQtiuVfnORyE7ki5YJWmD2MHsFB0QWR1gWYlU7KgRPMrdJ1zV064rPQMrZducAn68O1a3MDYgw0wZOxjwp__pPcYco5DUcPefh3wLk2mybPNOA7Y9pBzsNDjNm4hDPkGXXros7s9_zlavzx_1KuieVu-1k9NYRkpdwVhUAlFxXScFVz41ukJbbz1RAnQ1DElWqmOkEkhuK5Y5bje8NZx6zWbo8dT75hi5-zO7W0fWjOmsIV0MBGCqdfNmf0VOzCESEE511JOFfenCptizsn5vzQpzXHIYwCMomYakv0AbTJq-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized Laplacians for generalized Poisson-Cauchy transforms on classical domains</title><source>Project Euclid Open Access</source><source>Open Access Titles of Japan</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Imamura, Eisuke ; Okamoto, Kiyosato ; Tsukamoto, Michiroh ; Yamamori, Atsushi</creator><creatorcontrib>Imamura, Eisuke ; Okamoto, Kiyosato ; Tsukamoto, Michiroh ; Yamamori, Atsushi</creatorcontrib><description>We develop a group-theoretic method of generalizing the Laplace-Beltrami operators on the classical domains. In [18], we defined the generalized Poisson-Cauchy transforms on the classical domains. We show that the generalized Poisson-Cauchy transforms give us eigenfunctions of the generalized Laplacians defined in this paper.</description><identifier>ISSN: 0386-2194</identifier><identifier>DOI: 10.3792/pjaa.82.167</identifier><language>eng</language><publisher>The Japan Academy</publisher><subject>22E46 ; 32A26 ; 32M15 ; 43A85 ; analysis on homogeneous spaces ; Lie group representations ; Lie groups</subject><ispartof>Proceedings of the Japan Academy. Series A. Mathematical sciences, 2006-12, Vol.82 (9), p.167-172</ispartof><rights>Copyright 2006 The Japan Academy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c310t-13a75825758ec545fde9257bfcf185a92e385d68cf18365549737e49b4de4cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,882,885,926,27922,27923</link.rule.ids></links><search><creatorcontrib>Imamura, Eisuke</creatorcontrib><creatorcontrib>Okamoto, Kiyosato</creatorcontrib><creatorcontrib>Tsukamoto, Michiroh</creatorcontrib><creatorcontrib>Yamamori, Atsushi</creatorcontrib><title>Generalized Laplacians for generalized Poisson-Cauchy transforms on classical domains</title><title>Proceedings of the Japan Academy. Series A. Mathematical sciences</title><description>We develop a group-theoretic method of generalizing the Laplace-Beltrami operators on the classical domains. In [18], we defined the generalized Poisson-Cauchy transforms on the classical domains. We show that the generalized Poisson-Cauchy transforms give us eigenfunctions of the generalized Laplacians defined in this paper.</description><subject>22E46</subject><subject>32A26</subject><subject>32M15</subject><subject>43A85</subject><subject>analysis on homogeneous spaces</subject><subject>Lie group representations</subject><subject>Lie groups</subject><issn>0386-2194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpNULtOwzAU9QASpTDxA95RSvyMvYEiaJEiwUBn69axwVEaR3Y7lK8nVQtiuVfnORyE7ki5YJWmD2MHsFB0QWR1gWYlU7KgRPMrdJ1zV064rPQMrZducAn68O1a3MDYgw0wZOxjwp__pPcYco5DUcPefh3wLk2mybPNOA7Y9pBzsNDjNm4hDPkGXXros7s9_zlavzx_1KuieVu-1k9NYRkpdwVhUAlFxXScFVz41ukJbbz1RAnQ1DElWqmOkEkhuK5Y5bje8NZx6zWbo8dT75hi5-zO7W0fWjOmsIV0MBGCqdfNmf0VOzCESEE511JOFfenCptizsn5vzQpzXHIYwCMomYakv0AbTJq-Q</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Imamura, Eisuke</creator><creator>Okamoto, Kiyosato</creator><creator>Tsukamoto, Michiroh</creator><creator>Yamamori, Atsushi</creator><general>The Japan Academy</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200612</creationdate><title>Generalized Laplacians for generalized Poisson-Cauchy transforms on classical domains</title><author>Imamura, Eisuke ; Okamoto, Kiyosato ; Tsukamoto, Michiroh ; Yamamori, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-13a75825758ec545fde9257bfcf185a92e385d68cf18365549737e49b4de4cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>22E46</topic><topic>32A26</topic><topic>32M15</topic><topic>43A85</topic><topic>analysis on homogeneous spaces</topic><topic>Lie group representations</topic><topic>Lie groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imamura, Eisuke</creatorcontrib><creatorcontrib>Okamoto, Kiyosato</creatorcontrib><creatorcontrib>Tsukamoto, Michiroh</creatorcontrib><creatorcontrib>Yamamori, Atsushi</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Japan Academy. Series A. Mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imamura, Eisuke</au><au>Okamoto, Kiyosato</au><au>Tsukamoto, Michiroh</au><au>Yamamori, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Laplacians for generalized Poisson-Cauchy transforms on classical domains</atitle><jtitle>Proceedings of the Japan Academy. Series A. Mathematical sciences</jtitle><date>2006-12</date><risdate>2006</risdate><volume>82</volume><issue>9</issue><spage>167</spage><epage>172</epage><pages>167-172</pages><issn>0386-2194</issn><abstract>We develop a group-theoretic method of generalizing the Laplace-Beltrami operators on the classical domains. In [18], we defined the generalized Poisson-Cauchy transforms on the classical domains. We show that the generalized Poisson-Cauchy transforms give us eigenfunctions of the generalized Laplacians defined in this paper.</abstract><pub>The Japan Academy</pub><doi>10.3792/pjaa.82.167</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0386-2194
ispartof Proceedings of the Japan Academy. Series A. Mathematical sciences, 2006-12, Vol.82 (9), p.167-172
issn 0386-2194
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_pja_1165244966
source Project Euclid Open Access; Open Access Titles of Japan; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 22E46
32A26
32M15
43A85
analysis on homogeneous spaces
Lie group representations
Lie groups
title Generalized Laplacians for generalized Poisson-Cauchy transforms on classical domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Laplacians%20for%20generalized%20Poisson-Cauchy%20transforms%20on%20classical%20domains&rft.jtitle=Proceedings%20of%20the%20Japan%20Academy.%20Series%20A.%20Mathematical%20sciences&rft.au=Imamura,%20Eisuke&rft.date=2006-12&rft.volume=82&rft.issue=9&rft.spage=167&rft.epage=172&rft.pages=167-172&rft.issn=0386-2194&rft_id=info:doi/10.3792/pjaa.82.167&rft_dat=%3Ccrossref_proje%3E10_3792_pjaa_82_167%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true