Varieties of Picard rank one as components of ample divisors

Let \mathcal{V} be an integral normal complex projective variety of dimension n \geq 3 and denote by \mathcal{L} an ample line bundle on \mathcal{V}. By imposing that the linear system \lvert\mathcal{L}\rvert contains an element A = A_{1} + \cdots + A_{r}, r \geq 1, where all the A_{i}'s are di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Osaka journal of mathematics 2015-07, Vol.52 (no. 3), p.601-617
1. Verfasser: Tironi, Andrea Luigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 617
container_issue no. 3
container_start_page 601
container_title Osaka journal of mathematics
container_volume 52
creator Tironi, Andrea Luigi
description Let \mathcal{V} be an integral normal complex projective variety of dimension n \geq 3 and denote by \mathcal{L} an ample line bundle on \mathcal{V}. By imposing that the linear system \lvert\mathcal{L}\rvert contains an element A = A_{1} + \cdots + A_{r}, r \geq 1, where all the A_{i}'s are distinct effective Cartier divisors with \mathrm{Pic}(A_{i}) = \mathbb{Z}, we show that such a \mathcal{V} is as special as the components A_{i} of A \in \lvert\mathcal{L}\rvert. After making a list of some consequences about the positivity of the components A_{i}, we characterize pairs (\mathcal{V}, \mathcal{L}) as above when either A_{1} \cong \mathbb{P}^{n-1} and \mathrm{Pic}(A_{j}) = \mathbb{Z} for j = 2, \ldots, r, or \mathcal{V} is smooth and each A_{i} is a variety of small degree with respect to [H_{i}]_{A_{i}}, where [H_{i}]_{A_{i}} is the restriction to A_{i} of a suitable line bundle H_{i} on \mathcal{V}.
format Article
fullrecord <record><control><sourceid>projecteuclid</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_ojm_1437137611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_CULeuclid_euclid_ojm_1437137611</sourcerecordid><originalsourceid>FETCH-LOGICAL-n256t-7a05c2383f2676c8194108f6d714b66b4dc56a655c5aa36eac017da9c0dedc0a3</originalsourceid><addsrcrecordid>eNotjM1KxDAURrMZcGb0HfIChaRJbjowC4cy_kBBF47bcucmhdS2KUkVfHtFuzofh49zw3Y590JosFZs2fEdU_BL8JnHjr8GwuR4wumDx8lzzJziOP_Oafk74DgPnrvwFXJM-ZZtOhyyv1u5Z5eH81v9VDQvj8_1qSmm0sBSWBSGSlWprgQLVMmDlqLqwFmprwBX7cgAgjFkEBV4JCGtwwMJ5x0JVHt2_9-dU-w9Lf6ThuDaOYUR03cbMbT1pVntitiPrdTKSmVBSvUDTWlMUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Varieties of Picard rank one as components of ample divisors</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Open Access</source><source>Open Access Titles of Japan</source><source>Project Euclid Complete</source><creator>Tironi, Andrea Luigi</creator><creatorcontrib>Tironi, Andrea Luigi</creatorcontrib><description>Let \mathcal{V} be an integral normal complex projective variety of dimension n \geq 3 and denote by \mathcal{L} an ample line bundle on \mathcal{V}. By imposing that the linear system \lvert\mathcal{L}\rvert contains an element A = A_{1} + \cdots + A_{r}, r \geq 1, where all the A_{i}'s are distinct effective Cartier divisors with \mathrm{Pic}(A_{i}) = \mathbb{Z}, we show that such a \mathcal{V} is as special as the components A_{i} of A \in \lvert\mathcal{L}\rvert. After making a list of some consequences about the positivity of the components A_{i}, we characterize pairs (\mathcal{V}, \mathcal{L}) as above when either A_{1} \cong \mathbb{P}^{n-1} and \mathrm{Pic}(A_{j}) = \mathbb{Z} for j = 2, \ldots, r, or \mathcal{V} is smooth and each A_{i} is a variety of small degree with respect to [H_{i}]_{A_{i}}, where [H_{i}]_{A_{i}} is the restriction to A_{i} of a suitable line bundle H_{i} on \mathcal{V}.</description><language>eng</language><publisher>Osaka University and Osaka City University, Departments of Mathematics</publisher><subject>14C20 ; 14C22 ; 14J40 ; 14J45</subject><ispartof>Osaka journal of mathematics, 2015-07, Vol.52 (no. 3), p.601-617</ispartof><rights>Copyright 2015 Osaka University and Osaka City University, Departments of Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,880,883,924</link.rule.ids></links><search><creatorcontrib>Tironi, Andrea Luigi</creatorcontrib><title>Varieties of Picard rank one as components of ample divisors</title><title>Osaka journal of mathematics</title><description>Let \mathcal{V} be an integral normal complex projective variety of dimension n \geq 3 and denote by \mathcal{L} an ample line bundle on \mathcal{V}. By imposing that the linear system \lvert\mathcal{L}\rvert contains an element A = A_{1} + \cdots + A_{r}, r \geq 1, where all the A_{i}'s are distinct effective Cartier divisors with \mathrm{Pic}(A_{i}) = \mathbb{Z}, we show that such a \mathcal{V} is as special as the components A_{i} of A \in \lvert\mathcal{L}\rvert. After making a list of some consequences about the positivity of the components A_{i}, we characterize pairs (\mathcal{V}, \mathcal{L}) as above when either A_{1} \cong \mathbb{P}^{n-1} and \mathrm{Pic}(A_{j}) = \mathbb{Z} for j = 2, \ldots, r, or \mathcal{V} is smooth and each A_{i} is a variety of small degree with respect to [H_{i}]_{A_{i}}, where [H_{i}]_{A_{i}} is the restriction to A_{i} of a suitable line bundle H_{i} on \mathcal{V}.</description><subject>14C20</subject><subject>14C22</subject><subject>14J40</subject><subject>14J45</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjM1KxDAURrMZcGb0HfIChaRJbjowC4cy_kBBF47bcucmhdS2KUkVfHtFuzofh49zw3Y590JosFZs2fEdU_BL8JnHjr8GwuR4wumDx8lzzJziOP_Oafk74DgPnrvwFXJM-ZZtOhyyv1u5Z5eH81v9VDQvj8_1qSmm0sBSWBSGSlWprgQLVMmDlqLqwFmprwBX7cgAgjFkEBV4JCGtwwMJ5x0JVHt2_9-dU-w9Lf6ThuDaOYUR03cbMbT1pVntitiPrdTKSmVBSvUDTWlMUQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Tironi, Andrea Luigi</creator><general>Osaka University and Osaka City University, Departments of Mathematics</general><scope/></search><sort><creationdate>20150701</creationdate><title>Varieties of Picard rank one as components of ample divisors</title><author>Tironi, Andrea Luigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n256t-7a05c2383f2676c8194108f6d714b66b4dc56a655c5aa36eac017da9c0dedc0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>14C20</topic><topic>14C22</topic><topic>14J40</topic><topic>14J45</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tironi, Andrea Luigi</creatorcontrib><jtitle>Osaka journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tironi, Andrea Luigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Varieties of Picard rank one as components of ample divisors</atitle><jtitle>Osaka journal of mathematics</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>52</volume><issue>no. 3</issue><spage>601</spage><epage>617</epage><pages>601-617</pages><abstract>Let \mathcal{V} be an integral normal complex projective variety of dimension n \geq 3 and denote by \mathcal{L} an ample line bundle on \mathcal{V}. By imposing that the linear system \lvert\mathcal{L}\rvert contains an element A = A_{1} + \cdots + A_{r}, r \geq 1, where all the A_{i}'s are distinct effective Cartier divisors with \mathrm{Pic}(A_{i}) = \mathbb{Z}, we show that such a \mathcal{V} is as special as the components A_{i} of A \in \lvert\mathcal{L}\rvert. After making a list of some consequences about the positivity of the components A_{i}, we characterize pairs (\mathcal{V}, \mathcal{L}) as above when either A_{1} \cong \mathbb{P}^{n-1} and \mathrm{Pic}(A_{j}) = \mathbb{Z} for j = 2, \ldots, r, or \mathcal{V} is smooth and each A_{i} is a variety of small degree with respect to [H_{i}]_{A_{i}}, where [H_{i}]_{A_{i}} is the restriction to A_{i} of a suitable line bundle H_{i} on \mathcal{V}.</abstract><pub>Osaka University and Osaka City University, Departments of Mathematics</pub><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier
ispartof Osaka journal of mathematics, 2015-07, Vol.52 (no. 3), p.601-617
issn
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_ojm_1437137611
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Open Access; Open Access Titles of Japan; Project Euclid Complete
subjects 14C20
14C22
14J40
14J45
title Varieties of Picard rank one as components of ample divisors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-projecteuclid&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Varieties%20of%20Picard%20rank%20one%20as%20components%20of%20ample%20divisors&rft.jtitle=Osaka%20journal%20of%20mathematics&rft.au=Tironi,%20Andrea%20Luigi&rft.date=2015-07-01&rft.volume=52&rft.issue=no.%203&rft.spage=601&rft.epage=617&rft.pages=601-617&rft_id=info:doi/&rft_dat=%3Cprojecteuclid%3Eoai_CULeuclid_euclid_ojm_1437137611%3C/projecteuclid%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true