Self-similar solutions to the mean curvature flows on Riemannian cone manifolds and special Lagrangians on toric Calabi--Yau cones

The self-similar solutions to the mean curvature flow have been defined and studied on the Euclidean space. In this paper we propose a general treatment of the self-similar solutions to the mean curvature flow on Riemannian cone manifolds. As a typical result we extend the well-known result of Huisk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Osaka journal of mathematics 2014-10, Vol.51 (no. 4), p.1053-1081
Hauptverfasser: Futaki, Akito, Hattori, Kota, Yamamoto, Hikaru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1081
container_issue no. 4
container_start_page 1053
container_title Osaka journal of mathematics
container_volume 51
creator Futaki, Akito
Hattori, Kota
Yamamoto, Hikaru
description The self-similar solutions to the mean curvature flow have been defined and studied on the Euclidean space. In this paper we propose a general treatment of the self-similar solutions to the mean curvature flow on Riemannian cone manifolds. As a typical result we extend the well-known result of Huisken about the asymptotic behavior for the singularities of the mean curvature flows. We also extend results on special Lagrangian submanifolds on \mathbb{C}^{n} to the toric Calabi--Yau cones over Sasaki--Einstein manifolds.
format Article
fullrecord <record><control><sourceid>projecteuclid</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_ojm_1414761911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_CULeuclid_euclid_ojm_1414761911</sourcerecordid><originalsourceid>FETCH-LOGICAL-n256t-7f6feb94615495e89d08b028525b1e532f6491b92cee40a25d18c9c1963b44743</originalsourceid><addsrcrecordid>eNotjM1KxDAUhbsR1NF3yAsUmjZJm51S_IOCoM7CVblNb8aUNClJqrj1yR3Hrg6c833nPLuMcSoKJuq6uMh-XtHqPJrZWAgkersm410kyZP0gWRGcESt4RPSGpBo678i8Y68GJzBOfO3enfkwBnt7RgJuJHEBZUBSzo4BHCHI3WSkg9GkRYsDCbP32E9ufEqO9NgI15vucv293dv7WPePT88tbdd7kouUl5roXGQTFDOJMdGjkUzFGXDSz5Q5FWpBZN0kKVCZAWUfKSNkopKUQ2M1azaZTf_v0vwE6qEq7Jm7JdgZgjfvQfTt_tua7fw09xTRlktqKS0-gVRZ2Vq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-similar solutions to the mean curvature flows on Riemannian cone manifolds and special Lagrangians on toric Calabi--Yau cones</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Open Access</source><source>Open Access Titles of Japan</source><source>Project Euclid Complete</source><creator>Futaki, Akito ; Hattori, Kota ; Yamamoto, Hikaru</creator><creatorcontrib>Futaki, Akito ; Hattori, Kota ; Yamamoto, Hikaru</creatorcontrib><description>The self-similar solutions to the mean curvature flow have been defined and studied on the Euclidean space. In this paper we propose a general treatment of the self-similar solutions to the mean curvature flow on Riemannian cone manifolds. As a typical result we extend the well-known result of Huisken about the asymptotic behavior for the singularities of the mean curvature flows. We also extend results on special Lagrangian submanifolds on \mathbb{C}^{n} to the toric Calabi--Yau cones over Sasaki--Einstein manifolds.</description><language>eng</language><publisher>Osaka University and Osaka City University, Departments of Mathematics</publisher><subject>53C21 ; 53C55 ; 55N91</subject><ispartof>Osaka journal of mathematics, 2014-10, Vol.51 (no. 4), p.1053-1081</ispartof><rights>Copyright 2014 Osaka University and Osaka City University, Departments of Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,880,883,924</link.rule.ids></links><search><creatorcontrib>Futaki, Akito</creatorcontrib><creatorcontrib>Hattori, Kota</creatorcontrib><creatorcontrib>Yamamoto, Hikaru</creatorcontrib><title>Self-similar solutions to the mean curvature flows on Riemannian cone manifolds and special Lagrangians on toric Calabi--Yau cones</title><title>Osaka journal of mathematics</title><description>The self-similar solutions to the mean curvature flow have been defined and studied on the Euclidean space. In this paper we propose a general treatment of the self-similar solutions to the mean curvature flow on Riemannian cone manifolds. As a typical result we extend the well-known result of Huisken about the asymptotic behavior for the singularities of the mean curvature flows. We also extend results on special Lagrangian submanifolds on \mathbb{C}^{n} to the toric Calabi--Yau cones over Sasaki--Einstein manifolds.</description><subject>53C21</subject><subject>53C55</subject><subject>55N91</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjM1KxDAUhbsR1NF3yAsUmjZJm51S_IOCoM7CVblNb8aUNClJqrj1yR3Hrg6c833nPLuMcSoKJuq6uMh-XtHqPJrZWAgkersm410kyZP0gWRGcESt4RPSGpBo678i8Y68GJzBOfO3enfkwBnt7RgJuJHEBZUBSzo4BHCHI3WSkg9GkRYsDCbP32E9ufEqO9NgI15vucv293dv7WPePT88tbdd7kouUl5roXGQTFDOJMdGjkUzFGXDSz5Q5FWpBZN0kKVCZAWUfKSNkopKUQ2M1azaZTf_v0vwE6qEq7Jm7JdgZgjfvQfTt_tua7fw09xTRlktqKS0-gVRZ2Vq</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Futaki, Akito</creator><creator>Hattori, Kota</creator><creator>Yamamoto, Hikaru</creator><general>Osaka University and Osaka City University, Departments of Mathematics</general><scope/></search><sort><creationdate>20141001</creationdate><title>Self-similar solutions to the mean curvature flows on Riemannian cone manifolds and special Lagrangians on toric Calabi--Yau cones</title><author>Futaki, Akito ; Hattori, Kota ; Yamamoto, Hikaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n256t-7f6feb94615495e89d08b028525b1e532f6491b92cee40a25d18c9c1963b44743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>53C21</topic><topic>53C55</topic><topic>55N91</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Futaki, Akito</creatorcontrib><creatorcontrib>Hattori, Kota</creatorcontrib><creatorcontrib>Yamamoto, Hikaru</creatorcontrib><jtitle>Osaka journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Futaki, Akito</au><au>Hattori, Kota</au><au>Yamamoto, Hikaru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-similar solutions to the mean curvature flows on Riemannian cone manifolds and special Lagrangians on toric Calabi--Yau cones</atitle><jtitle>Osaka journal of mathematics</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>51</volume><issue>no. 4</issue><spage>1053</spage><epage>1081</epage><pages>1053-1081</pages><abstract>The self-similar solutions to the mean curvature flow have been defined and studied on the Euclidean space. In this paper we propose a general treatment of the self-similar solutions to the mean curvature flow on Riemannian cone manifolds. As a typical result we extend the well-known result of Huisken about the asymptotic behavior for the singularities of the mean curvature flows. We also extend results on special Lagrangian submanifolds on \mathbb{C}^{n} to the toric Calabi--Yau cones over Sasaki--Einstein manifolds.</abstract><pub>Osaka University and Osaka City University, Departments of Mathematics</pub><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier
ispartof Osaka journal of mathematics, 2014-10, Vol.51 (no. 4), p.1053-1081
issn
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_ojm_1414761911
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Open Access; Open Access Titles of Japan; Project Euclid Complete
subjects 53C21
53C55
55N91
title Self-similar solutions to the mean curvature flows on Riemannian cone manifolds and special Lagrangians on toric Calabi--Yau cones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-projecteuclid&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-similar%20solutions%20to%20the%20mean%20curvature%20flows%20on%20Riemannian%20cone%20manifolds%20and%20special%20Lagrangians%20on%20toric%20Calabi--Yau%20cones&rft.jtitle=Osaka%20journal%20of%20mathematics&rft.au=Futaki,%20Akito&rft.date=2014-10-01&rft.volume=51&rft.issue=no.%204&rft.spage=1053&rft.epage=1081&rft.pages=1053-1081&rft_id=info:doi/&rft_dat=%3Cprojecteuclid%3Eoai_CULeuclid_euclid_ojm_1414761911%3C/projecteuclid%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true