Normal functions and the height of Gross-Schoen cycles

We prove a variant of a formula due to Zhang relating the Beilinson– Bloch height of the Gross–Schoen cycle on a pointed curve with the self-intersection of its relative dualizing sheaf. In our approach, the height of the Gross–Schoen cycle occurs as the degree of a suitable Bloch line bundle. We sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2014-06, Vol.214, p.53-77
1. Verfasser: Jong, Robin De
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue
container_start_page 53
container_title Nagoya mathematical journal
container_volume 214
creator Jong, Robin De
description We prove a variant of a formula due to Zhang relating the Beilinson– Bloch height of the Gross–Schoen cycle on a pointed curve with the self-intersection of its relative dualizing sheaf. In our approach, the height of the Gross–Schoen cycle occurs as the degree of a suitable Bloch line bundle. We show that the Chern form of this line bundle is nonnegative, and we calculate its class in the Picard group of the moduli space of pointed stable curves of compact type. The basic tools are normal functions and biextensions associated to the cohomology of the universal Jacobian.
doi_str_mv 10.1215/00277630-2413391
format Article
fullrecord <record><control><sourceid>cambridge_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_nmj_1389795890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1215_00277630_2413391</cupid><sourcerecordid>10_1215_00277630_2413391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-28227a43a5d3a246d2bdec911253d9a043dc915df54882d67f896c7bea8eb1133</originalsourceid><addsrcrecordid>eNp1kE1PhDAYhBujibh699g_UO0HhfamIbqaED3onpvSlgUCdNOyh_33Qha9eZq87-SZZAaAe4IfCCX8EWOa5xnDiKaEMUkuQDK_KcpESi9Bstho8a_BTYwdxlgwyRKQffgw6B7Wx9FMrR8j1KOFU-Ng49p9M0Ffw23wMaIv03g3QnMyvYu34KrWfXR3q27A7vXlu3hD5ef2vXgukWGCT4gKSnOdMs0t0zTNLK2sM5IQypmVGqfMzhe3NU-FoDbLayEzk1dOC1eRuccGPJ1zD8F3zkzuaPrWqkNoBx1OyutWFbty_a4yDp0iTMhcciHxHIHPEWapEVz9RxOslunU73RqnW5G6IrooQqt3TvV-WMY56b_Qz-Vx2-5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Normal functions and the height of Gross-Schoen cycles</title><source>Project Euclid Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Jong, Robin De</creator><creatorcontrib>Jong, Robin De</creatorcontrib><description>We prove a variant of a formula due to Zhang relating the Beilinson– Bloch height of the Gross–Schoen cycle on a pointed curve with the self-intersection of its relative dualizing sheaf. In our approach, the height of the Gross–Schoen cycle occurs as the degree of a suitable Bloch line bundle. We show that the Chern form of this line bundle is nonnegative, and we calculate its class in the Picard group of the moduli space of pointed stable curves of compact type. The basic tools are normal functions and biextensions associated to the cohomology of the universal Jacobian.</description><identifier>ISSN: 0027-7630</identifier><identifier>EISSN: 2152-6842</identifier><identifier>DOI: 10.1215/00277630-2413391</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>14C25 ; 14D06 ; 14G40</subject><ispartof>Nagoya mathematical journal, 2014-06, Vol.214, p.53-77</ispartof><rights>Copyright © Editorial Board of Nagoya Mathematical Journal 2014</rights><rights>Copyright 2014 Editorial Board, Nagoya Mathematical Journal</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-28227a43a5d3a246d2bdec911253d9a043dc915df54882d67f896c7bea8eb1133</citedby><cites>FETCH-LOGICAL-c385t-28227a43a5d3a246d2bdec911253d9a043dc915df54882d67f896c7bea8eb1133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,882,885,926,27924,27925</link.rule.ids></links><search><creatorcontrib>Jong, Robin De</creatorcontrib><title>Normal functions and the height of Gross-Schoen cycles</title><title>Nagoya mathematical journal</title><addtitle>Nagoya Mathematical Journal</addtitle><description>We prove a variant of a formula due to Zhang relating the Beilinson– Bloch height of the Gross–Schoen cycle on a pointed curve with the self-intersection of its relative dualizing sheaf. In our approach, the height of the Gross–Schoen cycle occurs as the degree of a suitable Bloch line bundle. We show that the Chern form of this line bundle is nonnegative, and we calculate its class in the Picard group of the moduli space of pointed stable curves of compact type. The basic tools are normal functions and biextensions associated to the cohomology of the universal Jacobian.</description><subject>14C25</subject><subject>14D06</subject><subject>14G40</subject><issn>0027-7630</issn><issn>2152-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PhDAYhBujibh699g_UO0HhfamIbqaED3onpvSlgUCdNOyh_33Qha9eZq87-SZZAaAe4IfCCX8EWOa5xnDiKaEMUkuQDK_KcpESi9Bstho8a_BTYwdxlgwyRKQffgw6B7Wx9FMrR8j1KOFU-Ng49p9M0Ffw23wMaIv03g3QnMyvYu34KrWfXR3q27A7vXlu3hD5ef2vXgukWGCT4gKSnOdMs0t0zTNLK2sM5IQypmVGqfMzhe3NU-FoDbLayEzk1dOC1eRuccGPJ1zD8F3zkzuaPrWqkNoBx1OyutWFbty_a4yDp0iTMhcciHxHIHPEWapEVz9RxOslunU73RqnW5G6IrooQqt3TvV-WMY56b_Qz-Vx2-5</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Jong, Robin De</creator><general>Cambridge University Press</general><general>Duke University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140601</creationdate><title>Normal functions and the height of Gross-Schoen cycles</title><author>Jong, Robin De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-28227a43a5d3a246d2bdec911253d9a043dc915df54882d67f896c7bea8eb1133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>14C25</topic><topic>14D06</topic><topic>14G40</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jong, Robin De</creatorcontrib><collection>CrossRef</collection><jtitle>Nagoya mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jong, Robin De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal functions and the height of Gross-Schoen cycles</atitle><jtitle>Nagoya mathematical journal</jtitle><addtitle>Nagoya Mathematical Journal</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>214</volume><spage>53</spage><epage>77</epage><pages>53-77</pages><issn>0027-7630</issn><eissn>2152-6842</eissn><abstract>We prove a variant of a formula due to Zhang relating the Beilinson– Bloch height of the Gross–Schoen cycle on a pointed curve with the self-intersection of its relative dualizing sheaf. In our approach, the height of the Gross–Schoen cycle occurs as the degree of a suitable Bloch line bundle. We show that the Chern form of this line bundle is nonnegative, and we calculate its class in the Picard group of the moduli space of pointed stable curves of compact type. The basic tools are normal functions and biextensions associated to the cohomology of the universal Jacobian.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1215/00277630-2413391</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-7630
ispartof Nagoya mathematical journal, 2014-06, Vol.214, p.53-77
issn 0027-7630
2152-6842
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_nmj_1389795890
source Project Euclid Open Access; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 14C25
14D06
14G40
title Normal functions and the height of Gross-Schoen cycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20functions%20and%20the%20height%20of%20Gross-Schoen%20cycles&rft.jtitle=Nagoya%20mathematical%20journal&rft.au=Jong,%20Robin%20De&rft.date=2014-06-01&rft.volume=214&rft.spage=53&rft.epage=77&rft.pages=53-77&rft.issn=0027-7630&rft.eissn=2152-6842&rft_id=info:doi/10.1215/00277630-2413391&rft_dat=%3Ccambridge_proje%3E10_1215_00277630_2413391%3C/cambridge_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1215_00277630_2413391&rfr_iscdi=true