Normal functions and the height of Gross-Schoen cycles
We prove a variant of a formula due to Zhang relating the Beilinson– Bloch height of the Gross–Schoen cycle on a pointed curve with the self-intersection of its relative dualizing sheaf. In our approach, the height of the Gross–Schoen cycle occurs as the degree of a suitable Bloch line bundle. We sh...
Gespeichert in:
Veröffentlicht in: | Nagoya mathematical journal 2014-06, Vol.214, p.53-77 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | |
container_start_page | 53 |
container_title | Nagoya mathematical journal |
container_volume | 214 |
creator | Jong, Robin De |
description | We prove a variant of a formula due to Zhang relating the Beilinson– Bloch height of the Gross–Schoen cycle on a pointed curve with the self-intersection of its relative dualizing sheaf. In our approach, the height of the Gross–Schoen cycle occurs as the degree of a suitable Bloch line bundle. We show that the Chern form of this line bundle is nonnegative, and we calculate its class in the Picard group of the moduli space of pointed stable curves of compact type. The basic tools are normal functions and biextensions associated to the cohomology of the universal Jacobian. |
doi_str_mv | 10.1215/00277630-2413391 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_nmj_1389795890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1215_00277630_2413391</cupid><sourcerecordid>10_1215_00277630_2413391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-28227a43a5d3a246d2bdec911253d9a043dc915df54882d67f896c7bea8eb1133</originalsourceid><addsrcrecordid>eNp1kE1PhDAYhBujibh699g_UO0HhfamIbqaED3onpvSlgUCdNOyh_33Qha9eZq87-SZZAaAe4IfCCX8EWOa5xnDiKaEMUkuQDK_KcpESi9Bstho8a_BTYwdxlgwyRKQffgw6B7Wx9FMrR8j1KOFU-Ng49p9M0Ffw23wMaIv03g3QnMyvYu34KrWfXR3q27A7vXlu3hD5ef2vXgukWGCT4gKSnOdMs0t0zTNLK2sM5IQypmVGqfMzhe3NU-FoDbLayEzk1dOC1eRuccGPJ1zD8F3zkzuaPrWqkNoBx1OyutWFbty_a4yDp0iTMhcciHxHIHPEWapEVz9RxOslunU73RqnW5G6IrooQqt3TvV-WMY56b_Qz-Vx2-5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Normal functions and the height of Gross-Schoen cycles</title><source>Project Euclid Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Jong, Robin De</creator><creatorcontrib>Jong, Robin De</creatorcontrib><description>We prove a variant of a formula due to Zhang relating the Beilinson– Bloch height of the Gross–Schoen cycle on a pointed curve with the self-intersection of its relative dualizing sheaf. In our approach, the height of the Gross–Schoen cycle occurs as the degree of a suitable Bloch line bundle. We show that the Chern form of this line bundle is nonnegative, and we calculate its class in the Picard group of the moduli space of pointed stable curves of compact type. The basic tools are normal functions and biextensions associated to the cohomology of the universal Jacobian.</description><identifier>ISSN: 0027-7630</identifier><identifier>EISSN: 2152-6842</identifier><identifier>DOI: 10.1215/00277630-2413391</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>14C25 ; 14D06 ; 14G40</subject><ispartof>Nagoya mathematical journal, 2014-06, Vol.214, p.53-77</ispartof><rights>Copyright © Editorial Board of Nagoya Mathematical Journal 2014</rights><rights>Copyright 2014 Editorial Board, Nagoya Mathematical Journal</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-28227a43a5d3a246d2bdec911253d9a043dc915df54882d67f896c7bea8eb1133</citedby><cites>FETCH-LOGICAL-c385t-28227a43a5d3a246d2bdec911253d9a043dc915df54882d67f896c7bea8eb1133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,882,885,926,27924,27925</link.rule.ids></links><search><creatorcontrib>Jong, Robin De</creatorcontrib><title>Normal functions and the height of Gross-Schoen cycles</title><title>Nagoya mathematical journal</title><addtitle>Nagoya Mathematical Journal</addtitle><description>We prove a variant of a formula due to Zhang relating the Beilinson– Bloch height of the Gross–Schoen cycle on a pointed curve with the self-intersection of its relative dualizing sheaf. In our approach, the height of the Gross–Schoen cycle occurs as the degree of a suitable Bloch line bundle. We show that the Chern form of this line bundle is nonnegative, and we calculate its class in the Picard group of the moduli space of pointed stable curves of compact type. The basic tools are normal functions and biextensions associated to the cohomology of the universal Jacobian.</description><subject>14C25</subject><subject>14D06</subject><subject>14G40</subject><issn>0027-7630</issn><issn>2152-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PhDAYhBujibh699g_UO0HhfamIbqaED3onpvSlgUCdNOyh_33Qha9eZq87-SZZAaAe4IfCCX8EWOa5xnDiKaEMUkuQDK_KcpESi9Bstho8a_BTYwdxlgwyRKQffgw6B7Wx9FMrR8j1KOFU-Ng49p9M0Ffw23wMaIv03g3QnMyvYu34KrWfXR3q27A7vXlu3hD5ef2vXgukWGCT4gKSnOdMs0t0zTNLK2sM5IQypmVGqfMzhe3NU-FoDbLayEzk1dOC1eRuccGPJ1zD8F3zkzuaPrWqkNoBx1OyutWFbty_a4yDp0iTMhcciHxHIHPEWapEVz9RxOslunU73RqnW5G6IrooQqt3TvV-WMY56b_Qz-Vx2-5</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Jong, Robin De</creator><general>Cambridge University Press</general><general>Duke University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140601</creationdate><title>Normal functions and the height of Gross-Schoen cycles</title><author>Jong, Robin De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-28227a43a5d3a246d2bdec911253d9a043dc915df54882d67f896c7bea8eb1133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>14C25</topic><topic>14D06</topic><topic>14G40</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jong, Robin De</creatorcontrib><collection>CrossRef</collection><jtitle>Nagoya mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jong, Robin De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal functions and the height of Gross-Schoen cycles</atitle><jtitle>Nagoya mathematical journal</jtitle><addtitle>Nagoya Mathematical Journal</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>214</volume><spage>53</spage><epage>77</epage><pages>53-77</pages><issn>0027-7630</issn><eissn>2152-6842</eissn><abstract>We prove a variant of a formula due to Zhang relating the Beilinson– Bloch height of the Gross–Schoen cycle on a pointed curve with the self-intersection of its relative dualizing sheaf. In our approach, the height of the Gross–Schoen cycle occurs as the degree of a suitable Bloch line bundle. We show that the Chern form of this line bundle is nonnegative, and we calculate its class in the Picard group of the moduli space of pointed stable curves of compact type. The basic tools are normal functions and biextensions associated to the cohomology of the universal Jacobian.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1215/00277630-2413391</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-7630 |
ispartof | Nagoya mathematical journal, 2014-06, Vol.214, p.53-77 |
issn | 0027-7630 2152-6842 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_nmj_1389795890 |
source | Project Euclid Open Access; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 14C25 14D06 14G40 |
title | Normal functions and the height of Gross-Schoen cycles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20functions%20and%20the%20height%20of%20Gross-Schoen%20cycles&rft.jtitle=Nagoya%20mathematical%20journal&rft.au=Jong,%20Robin%20De&rft.date=2014-06-01&rft.volume=214&rft.spage=53&rft.epage=77&rft.pages=53-77&rft.issn=0027-7630&rft.eissn=2152-6842&rft_id=info:doi/10.1215/00277630-2413391&rft_dat=%3Ccambridge_proje%3E10_1215_00277630_2413391%3C/cambridge_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1215_00277630_2413391&rfr_iscdi=true |