Geometric Quantities of Manifolds with grassmann structure

We study geometry of manifolds endowed with a Grassmann structure which depends on symmetries of their curvature. Due to this reason a complete decomposition of the space of curvature tensors over tensor product vector spaces into simple modules under the action of the group G = GL(p, ℝ) ⊗ GL(q, ℝ)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2005, Vol.180, p.45-76
Hauptverfasser: Bokan, N., Matzeu, P., Rakić, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue
container_start_page 45
container_title Nagoya mathematical journal
container_volume 180
creator Bokan, N.
Matzeu, P.
Rakić, Z.
description We study geometry of manifolds endowed with a Grassmann structure which depends on symmetries of their curvature. Due to this reason a complete decomposition of the space of curvature tensors over tensor product vector spaces into simple modules under the action of the group G = GL(p, ℝ) ⊗ GL(q, ℝ) is given. The dimensions of the simple submodules, the highest weights and some projections are determined. New torsion-free connections on Grassmann manifolds apart from previously known examples are given. We use algebraic results to reveal obstructions to the existence of corresponding connections compatible with some type of normalizations and to enlighten previously known results from another point of view.
doi_str_mv 10.1017/S0027763000009181
format Article
fullrecord <record><control><sourceid>cambridge_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_nmj_1134569895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0027763000009181</cupid><sourcerecordid>10_1017_S0027763000009181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-44ace35d52a6f36ece34f8e961806c7d6f9aac5fa2b4916a24ac5f70e6ccfd9d3</originalsourceid><addsrcrecordid>eNp9UNtKAzEUDKJgrX6Ab_sDq7ltNvFJKVqFioj2OaS51CzdTUmyiH_fXbr4InhehjlzZuAMANcI3iCI6tsPCHFdMwLHEYijEzDDqMIl4xSfgtkol6N-Di5SaoYjTgSZgbulDa3N0evivVdd9tnbVARXvKrOu7Azqfj2-avYRpVSq7quSDn2OvfRXoIzp3bJXk04B-unx8_Fc7l6W74sHlalJlzkklKlLalMhRVzhNmBUMetYIhDpmvDnFBKV07hDRWIKUxHVkPLtHZGGDIH98fcfQyN1dn2eueN3Effqvgjg_JysV5N2wm6tpEIEVoxwUU1RKBjhI4hpWjdrxtBOfYn__Q3eMjkUe0merO1sgl97IZX_3EdAD3ydBc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometric Quantities of Manifolds with grassmann structure</title><source>Project Euclid Open Access</source><source>Freely Accessible Japanese Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Bokan, N. ; Matzeu, P. ; Rakić, Z.</creator><creatorcontrib>Bokan, N. ; Matzeu, P. ; Rakić, Z.</creatorcontrib><description>We study geometry of manifolds endowed with a Grassmann structure which depends on symmetries of their curvature. Due to this reason a complete decomposition of the space of curvature tensors over tensor product vector spaces into simple modules under the action of the group G = GL(p, ℝ) ⊗ GL(q, ℝ) is given. The dimensions of the simple submodules, the highest weights and some projections are determined. New torsion-free connections on Grassmann manifolds apart from previously known examples are given. We use algebraic results to reveal obstructions to the existence of corresponding connections compatible with some type of normalizations and to enlighten previously known results from another point of view.</description><identifier>ISSN: 0027-7630</identifier><identifier>EISSN: 2152-6842</identifier><identifier>DOI: 10.1017/S0027763000009181</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>22E45 ; 53C30 ; action of a group ; Grassmann manifold ; holonomy group ; irreducible representation ; normalization ; torsion-free connection</subject><ispartof>Nagoya mathematical journal, 2005, Vol.180, p.45-76</ispartof><rights>Copyright © Editorial Board of Nagoya Mathematical Journal 2005</rights><rights>Copyright 2005 Editorial Board, Nagoya Mathematical Journal</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-44ace35d52a6f36ece34f8e961806c7d6f9aac5fa2b4916a24ac5f70e6ccfd9d3</citedby><cites>FETCH-LOGICAL-c389t-44ace35d52a6f36ece34f8e961806c7d6f9aac5fa2b4916a24ac5f70e6ccfd9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,878,881,921,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Bokan, N.</creatorcontrib><creatorcontrib>Matzeu, P.</creatorcontrib><creatorcontrib>Rakić, Z.</creatorcontrib><title>Geometric Quantities of Manifolds with grassmann structure</title><title>Nagoya mathematical journal</title><addtitle>Nagoya Mathematical Journal</addtitle><description>We study geometry of manifolds endowed with a Grassmann structure which depends on symmetries of their curvature. Due to this reason a complete decomposition of the space of curvature tensors over tensor product vector spaces into simple modules under the action of the group G = GL(p, ℝ) ⊗ GL(q, ℝ) is given. The dimensions of the simple submodules, the highest weights and some projections are determined. New torsion-free connections on Grassmann manifolds apart from previously known examples are given. We use algebraic results to reveal obstructions to the existence of corresponding connections compatible with some type of normalizations and to enlighten previously known results from another point of view.</description><subject>22E45</subject><subject>53C30</subject><subject>action of a group</subject><subject>Grassmann manifold</subject><subject>holonomy group</subject><subject>irreducible representation</subject><subject>normalization</subject><subject>torsion-free connection</subject><issn>0027-7630</issn><issn>2152-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9UNtKAzEUDKJgrX6Ab_sDq7ltNvFJKVqFioj2OaS51CzdTUmyiH_fXbr4InhehjlzZuAMANcI3iCI6tsPCHFdMwLHEYijEzDDqMIl4xSfgtkol6N-Di5SaoYjTgSZgbulDa3N0evivVdd9tnbVARXvKrOu7Azqfj2-avYRpVSq7quSDn2OvfRXoIzp3bJXk04B-unx8_Fc7l6W74sHlalJlzkklKlLalMhRVzhNmBUMetYIhDpmvDnFBKV07hDRWIKUxHVkPLtHZGGDIH98fcfQyN1dn2eueN3Effqvgjg_JysV5N2wm6tpEIEVoxwUU1RKBjhI4hpWjdrxtBOfYn__Q3eMjkUe0merO1sgl97IZX_3EdAD3ydBc</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Bokan, N.</creator><creator>Matzeu, P.</creator><creator>Rakić, Z.</creator><general>Cambridge University Press</general><general>Duke University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2005</creationdate><title>Geometric Quantities of Manifolds with grassmann structure</title><author>Bokan, N. ; Matzeu, P. ; Rakić, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-44ace35d52a6f36ece34f8e961806c7d6f9aac5fa2b4916a24ac5f70e6ccfd9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>22E45</topic><topic>53C30</topic><topic>action of a group</topic><topic>Grassmann manifold</topic><topic>holonomy group</topic><topic>irreducible representation</topic><topic>normalization</topic><topic>torsion-free connection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bokan, N.</creatorcontrib><creatorcontrib>Matzeu, P.</creatorcontrib><creatorcontrib>Rakić, Z.</creatorcontrib><collection>CrossRef</collection><jtitle>Nagoya mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bokan, N.</au><au>Matzeu, P.</au><au>Rakić, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Quantities of Manifolds with grassmann structure</atitle><jtitle>Nagoya mathematical journal</jtitle><addtitle>Nagoya Mathematical Journal</addtitle><date>2005</date><risdate>2005</risdate><volume>180</volume><spage>45</spage><epage>76</epage><pages>45-76</pages><issn>0027-7630</issn><eissn>2152-6842</eissn><abstract>We study geometry of manifolds endowed with a Grassmann structure which depends on symmetries of their curvature. Due to this reason a complete decomposition of the space of curvature tensors over tensor product vector spaces into simple modules under the action of the group G = GL(p, ℝ) ⊗ GL(q, ℝ) is given. The dimensions of the simple submodules, the highest weights and some projections are determined. New torsion-free connections on Grassmann manifolds apart from previously known examples are given. We use algebraic results to reveal obstructions to the existence of corresponding connections compatible with some type of normalizations and to enlighten previously known results from another point of view.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0027763000009181</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-7630
ispartof Nagoya mathematical journal, 2005, Vol.180, p.45-76
issn 0027-7630
2152-6842
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_nmj_1134569895
source Project Euclid Open Access; Freely Accessible Japanese Titles; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 22E45
53C30
action of a group
Grassmann manifold
holonomy group
irreducible representation
normalization
torsion-free connection
title Geometric Quantities of Manifolds with grassmann structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Quantities%20of%20Manifolds%20with%20grassmann%20structure&rft.jtitle=Nagoya%20mathematical%20journal&rft.au=Bokan,%20N.&rft.date=2005&rft.volume=180&rft.spage=45&rft.epage=76&rft.pages=45-76&rft.issn=0027-7630&rft.eissn=2152-6842&rft_id=info:doi/10.1017/S0027763000009181&rft_dat=%3Ccambridge_proje%3E10_1017_S0027763000009181%3C/cambridge_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0027763000009181&rfr_iscdi=true