Geometric Quantities of Manifolds with grassmann structure
We study geometry of manifolds endowed with a Grassmann structure which depends on symmetries of their curvature. Due to this reason a complete decomposition of the space of curvature tensors over tensor product vector spaces into simple modules under the action of the group G = GL(p, ℝ) ⊗ GL(q, ℝ)...
Gespeichert in:
Veröffentlicht in: | Nagoya mathematical journal 2005, Vol.180, p.45-76 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | |
container_start_page | 45 |
container_title | Nagoya mathematical journal |
container_volume | 180 |
creator | Bokan, N. Matzeu, P. Rakić, Z. |
description | We study geometry of manifolds endowed with a Grassmann structure which depends on symmetries of their curvature. Due to this reason a complete decomposition of the space of curvature tensors over tensor product vector spaces into simple modules under the action of the group G = GL(p, ℝ) ⊗ GL(q, ℝ) is given. The dimensions of the simple submodules, the highest weights and some projections are determined. New torsion-free connections on Grassmann manifolds apart from previously known examples are given. We use algebraic results to reveal obstructions to the existence of corresponding connections compatible with some type of normalizations and to enlighten previously known results from another point of view. |
doi_str_mv | 10.1017/S0027763000009181 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_nmj_1134569895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0027763000009181</cupid><sourcerecordid>10_1017_S0027763000009181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-44ace35d52a6f36ece34f8e961806c7d6f9aac5fa2b4916a24ac5f70e6ccfd9d3</originalsourceid><addsrcrecordid>eNp9UNtKAzEUDKJgrX6Ab_sDq7ltNvFJKVqFioj2OaS51CzdTUmyiH_fXbr4InhehjlzZuAMANcI3iCI6tsPCHFdMwLHEYijEzDDqMIl4xSfgtkol6N-Di5SaoYjTgSZgbulDa3N0evivVdd9tnbVARXvKrOu7Azqfj2-avYRpVSq7quSDn2OvfRXoIzp3bJXk04B-unx8_Fc7l6W74sHlalJlzkklKlLalMhRVzhNmBUMetYIhDpmvDnFBKV07hDRWIKUxHVkPLtHZGGDIH98fcfQyN1dn2eueN3Effqvgjg_JysV5N2wm6tpEIEVoxwUU1RKBjhI4hpWjdrxtBOfYn__Q3eMjkUe0merO1sgl97IZX_3EdAD3ydBc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometric Quantities of Manifolds with grassmann structure</title><source>Project Euclid Open Access</source><source>Freely Accessible Japanese Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Bokan, N. ; Matzeu, P. ; Rakić, Z.</creator><creatorcontrib>Bokan, N. ; Matzeu, P. ; Rakić, Z.</creatorcontrib><description>We study geometry of manifolds endowed with a Grassmann structure which depends on symmetries of their curvature. Due to this reason a complete decomposition of the space of curvature tensors over tensor product vector spaces into simple modules under the action of the group G = GL(p, ℝ) ⊗ GL(q, ℝ) is given. The dimensions of the simple submodules, the highest weights and some projections are determined. New torsion-free connections on Grassmann manifolds apart from previously known examples are given. We use algebraic results to reveal obstructions to the existence of corresponding connections compatible with some type of normalizations and to enlighten previously known results from another point of view.</description><identifier>ISSN: 0027-7630</identifier><identifier>EISSN: 2152-6842</identifier><identifier>DOI: 10.1017/S0027763000009181</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>22E45 ; 53C30 ; action of a group ; Grassmann manifold ; holonomy group ; irreducible representation ; normalization ; torsion-free connection</subject><ispartof>Nagoya mathematical journal, 2005, Vol.180, p.45-76</ispartof><rights>Copyright © Editorial Board of Nagoya Mathematical Journal 2005</rights><rights>Copyright 2005 Editorial Board, Nagoya Mathematical Journal</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-44ace35d52a6f36ece34f8e961806c7d6f9aac5fa2b4916a24ac5f70e6ccfd9d3</citedby><cites>FETCH-LOGICAL-c389t-44ace35d52a6f36ece34f8e961806c7d6f9aac5fa2b4916a24ac5f70e6ccfd9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,878,881,921,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Bokan, N.</creatorcontrib><creatorcontrib>Matzeu, P.</creatorcontrib><creatorcontrib>Rakić, Z.</creatorcontrib><title>Geometric Quantities of Manifolds with grassmann structure</title><title>Nagoya mathematical journal</title><addtitle>Nagoya Mathematical Journal</addtitle><description>We study geometry of manifolds endowed with a Grassmann structure which depends on symmetries of their curvature. Due to this reason a complete decomposition of the space of curvature tensors over tensor product vector spaces into simple modules under the action of the group G = GL(p, ℝ) ⊗ GL(q, ℝ) is given. The dimensions of the simple submodules, the highest weights and some projections are determined. New torsion-free connections on Grassmann manifolds apart from previously known examples are given. We use algebraic results to reveal obstructions to the existence of corresponding connections compatible with some type of normalizations and to enlighten previously known results from another point of view.</description><subject>22E45</subject><subject>53C30</subject><subject>action of a group</subject><subject>Grassmann manifold</subject><subject>holonomy group</subject><subject>irreducible representation</subject><subject>normalization</subject><subject>torsion-free connection</subject><issn>0027-7630</issn><issn>2152-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9UNtKAzEUDKJgrX6Ab_sDq7ltNvFJKVqFioj2OaS51CzdTUmyiH_fXbr4InhehjlzZuAMANcI3iCI6tsPCHFdMwLHEYijEzDDqMIl4xSfgtkol6N-Di5SaoYjTgSZgbulDa3N0evivVdd9tnbVARXvKrOu7Azqfj2-avYRpVSq7quSDn2OvfRXoIzp3bJXk04B-unx8_Fc7l6W74sHlalJlzkklKlLalMhRVzhNmBUMetYIhDpmvDnFBKV07hDRWIKUxHVkPLtHZGGDIH98fcfQyN1dn2eueN3Effqvgjg_JysV5N2wm6tpEIEVoxwUU1RKBjhI4hpWjdrxtBOfYn__Q3eMjkUe0merO1sgl97IZX_3EdAD3ydBc</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Bokan, N.</creator><creator>Matzeu, P.</creator><creator>Rakić, Z.</creator><general>Cambridge University Press</general><general>Duke University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2005</creationdate><title>Geometric Quantities of Manifolds with grassmann structure</title><author>Bokan, N. ; Matzeu, P. ; Rakić, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-44ace35d52a6f36ece34f8e961806c7d6f9aac5fa2b4916a24ac5f70e6ccfd9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>22E45</topic><topic>53C30</topic><topic>action of a group</topic><topic>Grassmann manifold</topic><topic>holonomy group</topic><topic>irreducible representation</topic><topic>normalization</topic><topic>torsion-free connection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bokan, N.</creatorcontrib><creatorcontrib>Matzeu, P.</creatorcontrib><creatorcontrib>Rakić, Z.</creatorcontrib><collection>CrossRef</collection><jtitle>Nagoya mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bokan, N.</au><au>Matzeu, P.</au><au>Rakić, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Quantities of Manifolds with grassmann structure</atitle><jtitle>Nagoya mathematical journal</jtitle><addtitle>Nagoya Mathematical Journal</addtitle><date>2005</date><risdate>2005</risdate><volume>180</volume><spage>45</spage><epage>76</epage><pages>45-76</pages><issn>0027-7630</issn><eissn>2152-6842</eissn><abstract>We study geometry of manifolds endowed with a Grassmann structure which depends on symmetries of their curvature. Due to this reason a complete decomposition of the space of curvature tensors over tensor product vector spaces into simple modules under the action of the group G = GL(p, ℝ) ⊗ GL(q, ℝ) is given. The dimensions of the simple submodules, the highest weights and some projections are determined. New torsion-free connections on Grassmann manifolds apart from previously known examples are given. We use algebraic results to reveal obstructions to the existence of corresponding connections compatible with some type of normalizations and to enlighten previously known results from another point of view.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0027763000009181</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-7630 |
ispartof | Nagoya mathematical journal, 2005, Vol.180, p.45-76 |
issn | 0027-7630 2152-6842 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_nmj_1134569895 |
source | Project Euclid Open Access; Freely Accessible Japanese Titles; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 22E45 53C30 action of a group Grassmann manifold holonomy group irreducible representation normalization torsion-free connection |
title | Geometric Quantities of Manifolds with grassmann structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Quantities%20of%20Manifolds%20with%20grassmann%20structure&rft.jtitle=Nagoya%20mathematical%20journal&rft.au=Bokan,%20N.&rft.date=2005&rft.volume=180&rft.spage=45&rft.epage=76&rft.pages=45-76&rft.issn=0027-7630&rft.eissn=2152-6842&rft_id=info:doi/10.1017/S0027763000009181&rft_dat=%3Ccambridge_proje%3E10_1017_S0027763000009181%3C/cambridge_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0027763000009181&rfr_iscdi=true |