On the series for L(1, x)

Let k be a positive integer greater than 1, and let X(n) be a real primitive character modulo k, The series can be divided into groups of k consecutive terms.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 1996-03, Vol.141, p.125-142
Hauptverfasser: Leu, Ming-Guang, Winnie Li, Wen-Ch’ing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue
container_start_page 125
container_title Nagoya mathematical journal
container_volume 141
creator Leu, Ming-Guang
Winnie Li, Wen-Ch’ing
description Let k be a positive integer greater than 1, and let X(n) be a real primitive character modulo k, The series can be divided into groups of k consecutive terms.
doi_str_mv 10.1017/S0027763000005559
format Article
fullrecord <record><control><sourceid>cambridge_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_nmj_1118774382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0027763000005559</cupid><sourcerecordid>10_1017_S0027763000005559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-a0b5ea2923e3f79d71e2a787336d4a18a342c94a74fecfbe3e31db0be7bd89f03</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFc_wN56VLCaSdImvSll_QOFPeieQ9JOtGW7XZIu6Le3ZYsXwbk8mHm_B_MIWQK9Awry_o1SJmXG6TRpmuYnJGKQsiRTgp2SaDon0_2cXITQjibFcx6R5XoXD58YB_QNhtj1Pi6v4Tb-urkkZ85sA17NuiCbp9V78ZKU6-fX4rFMKgHZkBhqUzQsZxy5k3ktAZmRSnKe1cKAMlywKhdGCoeVszjaoLbUorS1yh3lC_JwzN37vsVqwEO1bWq9901n_LfuTaOLTTlvZ9l1rQYAJaXgio0RcIyofB-CR_dLA9VTPfpPPSPDZ8Z01jf1B-q2P_jd-Oo_1A9Tm2T4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the series for L(1, x)</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Open Access</source><source>Freely Accessible Japanese Titles</source><source>Project Euclid Complete</source><creator>Leu, Ming-Guang ; Winnie Li, Wen-Ch’ing</creator><creatorcontrib>Leu, Ming-Guang ; Winnie Li, Wen-Ch’ing</creatorcontrib><description>Let k be a positive integer greater than 1, and let X(n) be a real primitive character modulo k, The series can be divided into groups of k consecutive terms.</description><identifier>ISSN: 0027-7630</identifier><identifier>EISSN: 2152-6842</identifier><identifier>DOI: 10.1017/S0027763000005559</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>11M20</subject><ispartof>Nagoya mathematical journal, 1996-03, Vol.141, p.125-142</ispartof><rights>Copyright © Editorial Board of Nagoya Mathematical Journal 1996</rights><rights>Copyright 1996 Editorial Board, Nagoya Mathematical Journal</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-a0b5ea2923e3f79d71e2a787336d4a18a342c94a74fecfbe3e31db0be7bd89f03</citedby><cites>FETCH-LOGICAL-c416t-a0b5ea2923e3f79d71e2a787336d4a18a342c94a74fecfbe3e31db0be7bd89f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,882,885,926,27924,27925</link.rule.ids></links><search><creatorcontrib>Leu, Ming-Guang</creatorcontrib><creatorcontrib>Winnie Li, Wen-Ch’ing</creatorcontrib><title>On the series for L(1, x)</title><title>Nagoya mathematical journal</title><addtitle>Nagoya Mathematical Journal</addtitle><description>Let k be a positive integer greater than 1, and let X(n) be a real primitive character modulo k, The series can be divided into groups of k consecutive terms.</description><subject>11M20</subject><issn>0027-7630</issn><issn>2152-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMoWFc_wN56VLCaSdImvSll_QOFPeieQ9JOtGW7XZIu6Le3ZYsXwbk8mHm_B_MIWQK9Awry_o1SJmXG6TRpmuYnJGKQsiRTgp2SaDon0_2cXITQjibFcx6R5XoXD58YB_QNhtj1Pi6v4Tb-urkkZ85sA17NuiCbp9V78ZKU6-fX4rFMKgHZkBhqUzQsZxy5k3ktAZmRSnKe1cKAMlywKhdGCoeVszjaoLbUorS1yh3lC_JwzN37vsVqwEO1bWq9901n_LfuTaOLTTlvZ9l1rQYAJaXgio0RcIyofB-CR_dLA9VTPfpPPSPDZ8Z01jf1B-q2P_jd-Oo_1A9Tm2T4</recordid><startdate>19960301</startdate><enddate>19960301</enddate><creator>Leu, Ming-Guang</creator><creator>Winnie Li, Wen-Ch’ing</creator><general>Cambridge University Press</general><general>Duke University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19960301</creationdate><title>On the series for L(1, x)</title><author>Leu, Ming-Guang ; Winnie Li, Wen-Ch’ing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-a0b5ea2923e3f79d71e2a787336d4a18a342c94a74fecfbe3e31db0be7bd89f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>11M20</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leu, Ming-Guang</creatorcontrib><creatorcontrib>Winnie Li, Wen-Ch’ing</creatorcontrib><collection>CrossRef</collection><jtitle>Nagoya mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leu, Ming-Guang</au><au>Winnie Li, Wen-Ch’ing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the series for L(1, x)</atitle><jtitle>Nagoya mathematical journal</jtitle><addtitle>Nagoya Mathematical Journal</addtitle><date>1996-03-01</date><risdate>1996</risdate><volume>141</volume><spage>125</spage><epage>142</epage><pages>125-142</pages><issn>0027-7630</issn><eissn>2152-6842</eissn><abstract>Let k be a positive integer greater than 1, and let X(n) be a real primitive character modulo k, The series can be divided into groups of k consecutive terms.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0027763000005559</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-7630
ispartof Nagoya mathematical journal, 1996-03, Vol.141, p.125-142
issn 0027-7630
2152-6842
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_nmj_1118774382
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Open Access; Freely Accessible Japanese Titles; Project Euclid Complete
subjects 11M20
title On the series for L(1, x)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A28%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20series%20for%20L(1,%20x)&rft.jtitle=Nagoya%20mathematical%20journal&rft.au=Leu,%20Ming-Guang&rft.date=1996-03-01&rft.volume=141&rft.spage=125&rft.epage=142&rft.pages=125-142&rft.issn=0027-7630&rft.eissn=2152-6842&rft_id=info:doi/10.1017/S0027763000005559&rft_dat=%3Ccambridge_proje%3E10_1017_S0027763000005559%3C/cambridge_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0027763000005559&rfr_iscdi=true