The Fixed Point Property in Modal Logic

This paper deals with the modal logics associated with (possibly nonstandard) provability predicates of Peano Arithmetic. One of our goals is to present some modal systems having the fixed point property and not extending the Gödel-Löb system GL. We prove that, for every n\geq 2, K+\square(\square^{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Notre Dame journal of formal logic 2001, Vol.42 (2), p.65-86
1. Verfasser: Sacchetti, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 2
container_start_page 65
container_title Notre Dame journal of formal logic
container_volume 42
creator Sacchetti, Lorenzo
description This paper deals with the modal logics associated with (possibly nonstandard) provability predicates of Peano Arithmetic. One of our goals is to present some modal systems having the fixed point property and not extending the Gödel-Löb system GL. We prove that, for every n\geq 2, K+\square(\square^{n-1}p\rightarrow p)\rightarrow\square p has the explicit fixed point property. Our main result states that every complete modal logic L having the Craig's interpolation property and such that L\vdash\Delta(\nabla(p)\rightarrow p)\rightarrow\Delta(p) , where \nabla(p) and \Delta(p) are suitable modal formulas, has the explicit fixed point property.
doi_str_mv 10.1305/ndjfl/1054837934
format Article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_ndjfl_1054837934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1305_ndjfl_1054837934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2594-eb0ad38416c116509f1d10ea5e9b3a751c0e537c8aff095221af0d795ff59e633</originalsourceid><addsrcrecordid>eNplkM9LwzAYhoMoWKd3j715qvu-pGmaoxY3hYo7bOeS5Ydm1KakFdx_73RFD55eeOF54H0JuUa4RQZ83pmda-cIPC-ZkCw_IQlKJjMQtDglCQCVWc6pOCcXw7ADwJzLPCE36zebLvynNekq-G5MVzH0No771HfpczCqTevw6vUlOXOqHezVlDOyWTysq8esflk-VXd1punBl9ktKMPKHAuNWHCQDg2CVdzKLVOCowbLmdClcg4kpxSVAyMkd45LWzA2I_dHbx_DzurRfujWm6aP_l3FfROUb6pNPbVT_Exv_qYfJHCU6BiGIVr3yyM032_9R74ABNpdaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Fixed Point Property in Modal Logic</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><creator>Sacchetti, Lorenzo</creator><creatorcontrib>Sacchetti, Lorenzo</creatorcontrib><description>This paper deals with the modal logics associated with (possibly nonstandard) provability predicates of Peano Arithmetic. One of our goals is to present some modal systems having the fixed point property and not extending the Gödel-Löb system GL. We prove that, for every n\geq 2, K+\square(\square^{n-1}p\rightarrow p)\rightarrow\square p has the explicit fixed point property. Our main result states that every complete modal logic L having the Craig's interpolation property and such that L\vdash\Delta(\nabla(p)\rightarrow p)\rightarrow\Delta(p) , where \nabla(p) and \Delta(p) are suitable modal formulas, has the explicit fixed point property.</description><identifier>ISSN: 0029-4527</identifier><identifier>EISSN: 1939-0726</identifier><identifier>DOI: 10.1305/ndjfl/1054837934</identifier><language>eng</language><publisher>Duke University Press</publisher><subject>03B45 ; 03F30 ; 03F40 ; 03F45 ; fixed points ; modal logic ; provability predicates</subject><ispartof>Notre Dame journal of formal logic, 2001, Vol.42 (2), p.65-86</ispartof><rights>Copyright 2001 University of Notre Dame</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2594-eb0ad38416c116509f1d10ea5e9b3a751c0e537c8aff095221af0d795ff59e633</citedby><cites>FETCH-LOGICAL-c2594-eb0ad38416c116509f1d10ea5e9b3a751c0e537c8aff095221af0d795ff59e633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,921,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Sacchetti, Lorenzo</creatorcontrib><title>The Fixed Point Property in Modal Logic</title><title>Notre Dame journal of formal logic</title><description>This paper deals with the modal logics associated with (possibly nonstandard) provability predicates of Peano Arithmetic. One of our goals is to present some modal systems having the fixed point property and not extending the Gödel-Löb system GL. We prove that, for every n\geq 2, K+\square(\square^{n-1}p\rightarrow p)\rightarrow\square p has the explicit fixed point property. Our main result states that every complete modal logic L having the Craig's interpolation property and such that L\vdash\Delta(\nabla(p)\rightarrow p)\rightarrow\Delta(p) , where \nabla(p) and \Delta(p) are suitable modal formulas, has the explicit fixed point property.</description><subject>03B45</subject><subject>03F30</subject><subject>03F40</subject><subject>03F45</subject><subject>fixed points</subject><subject>modal logic</subject><subject>provability predicates</subject><issn>0029-4527</issn><issn>1939-0726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNplkM9LwzAYhoMoWKd3j715qvu-pGmaoxY3hYo7bOeS5Ydm1KakFdx_73RFD55eeOF54H0JuUa4RQZ83pmda-cIPC-ZkCw_IQlKJjMQtDglCQCVWc6pOCcXw7ADwJzLPCE36zebLvynNekq-G5MVzH0No771HfpczCqTevw6vUlOXOqHezVlDOyWTysq8esflk-VXd1punBl9ktKMPKHAuNWHCQDg2CVdzKLVOCowbLmdClcg4kpxSVAyMkd45LWzA2I_dHbx_DzurRfujWm6aP_l3FfROUb6pNPbVT_Exv_qYfJHCU6BiGIVr3yyM032_9R74ABNpdaA</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Sacchetti, Lorenzo</creator><general>Duke University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2001</creationdate><title>The Fixed Point Property in Modal Logic</title><author>Sacchetti, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2594-eb0ad38416c116509f1d10ea5e9b3a751c0e537c8aff095221af0d795ff59e633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>03B45</topic><topic>03F30</topic><topic>03F40</topic><topic>03F45</topic><topic>fixed points</topic><topic>modal logic</topic><topic>provability predicates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sacchetti, Lorenzo</creatorcontrib><collection>CrossRef</collection><jtitle>Notre Dame journal of formal logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sacchetti, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Fixed Point Property in Modal Logic</atitle><jtitle>Notre Dame journal of formal logic</jtitle><date>2001</date><risdate>2001</risdate><volume>42</volume><issue>2</issue><spage>65</spage><epage>86</epage><pages>65-86</pages><issn>0029-4527</issn><eissn>1939-0726</eissn><abstract>This paper deals with the modal logics associated with (possibly nonstandard) provability predicates of Peano Arithmetic. One of our goals is to present some modal systems having the fixed point property and not extending the Gödel-Löb system GL. We prove that, for every n\geq 2, K+\square(\square^{n-1}p\rightarrow p)\rightarrow\square p has the explicit fixed point property. Our main result states that every complete modal logic L having the Craig's interpolation property and such that L\vdash\Delta(\nabla(p)\rightarrow p)\rightarrow\Delta(p) , where \nabla(p) and \Delta(p) are suitable modal formulas, has the explicit fixed point property.</abstract><pub>Duke University Press</pub><doi>10.1305/ndjfl/1054837934</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-4527
ispartof Notre Dame journal of formal logic, 2001, Vol.42 (2), p.65-86
issn 0029-4527
1939-0726
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_ndjfl_1054837934
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete
subjects 03B45
03F30
03F40
03F45
fixed points
modal logic
provability predicates
title The Fixed Point Property in Modal Logic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Fixed%20Point%20Property%20in%20Modal%20Logic&rft.jtitle=Notre%20Dame%20journal%20of%20formal%20logic&rft.au=Sacchetti,%20Lorenzo&rft.date=2001&rft.volume=42&rft.issue=2&rft.spage=65&rft.epage=86&rft.pages=65-86&rft.issn=0029-4527&rft.eissn=1939-0726&rft_id=info:doi/10.1305/ndjfl/1054837934&rft_dat=%3Ccrossref_proje%3E10_1305_ndjfl_1054837934%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true