The model-theoretic ordinal analysis of theories of predicative strength

We use model-theoretic methods described in [3] to obtain ordinal analyses of a number of theories of first-and second-order arithmetic, whose proof-theoretic ordinals are less than or equal to Γ0.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 1999-03, Vol.64 (1), p.327-349
Hauptverfasser: Avigad, Jeremy, Sommer, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue 1
container_start_page 327
container_title The Journal of symbolic logic
container_volume 64
creator Avigad, Jeremy
Sommer, Richard
description We use model-theoretic methods described in [3] to obtain ordinal analyses of a number of theories of first-and second-order arithmetic, whose proof-theoretic ordinals are less than or equal to Γ0.
doi_str_mv 10.2307/2586768
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183745709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2586768</jstor_id><sourcerecordid>2586768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6040212a5b43220e8c033146cbf473d39f567553607062ff115948f142f57553</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv4FxYUPK3mO9mbUrQVCyJUPIZ0N7FZt01NUrH_3m136dHLzPDOwzsfAFwieIsJFHeYSS64PAIDVFCSMyn5MRhAiHFOJcKn4CzGGkLICioHYDJbmGzpK9PkaWF8MMmVmQ-VW-km023YRhczb7N915l9vQ6mcqVO7sdkMQWz-kyLc3BidRPNRZ-HYPb0OBtN8unr-Hn0MM1LCmXKOaQQI6zZnBKMoZElJARRXs4tFaQihWVcMEY4FJBjaxHa7WkRxZbt9CG472zXwdemTGZTNq5S6-CWOmyV106N3qe92qc6NgohSQRlAhatxdXB4ntjYlK134T21KgQJxQhUXDeUjcdVQYfYzD2MANBtXu06h_dktcdWcfkwz9Y3mEuJvN7wHT4UlwQwRQfvyk6_mDkZVKoEfkDKUKIPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634117966</pqid></control><display><type>article</type><title>The model-theoretic ordinal analysis of theories of predicative strength</title><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Avigad, Jeremy ; Sommer, Richard</creator><creatorcontrib>Avigad, Jeremy ; Sommer, Richard</creatorcontrib><description>We use model-theoretic methods described in [3] to obtain ordinal analyses of a number of theories of first-and second-order arithmetic, whose proof-theoretic ordinals are less than or equal to Γ0.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.2307/2586768</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Arithmetic ; Induction assumption ; Mathematical logic ; Mathematical theorems ; Modeling ; Multilevel models ; Natural numbers ; Ordinal notation ; Parametric models ; Predicate logic</subject><ispartof>The Journal of symbolic logic, 1999-03, Vol.64 (1), p.327-349</ispartof><rights>Copyright 1999 Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6040212a5b43220e8c033146cbf473d39f567553607062ff115948f142f57553</citedby><cites>FETCH-LOGICAL-c408t-6040212a5b43220e8c033146cbf473d39f567553607062ff115948f142f57553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2586768$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2586768$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27869,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Avigad, Jeremy</creatorcontrib><creatorcontrib>Sommer, Richard</creatorcontrib><title>The model-theoretic ordinal analysis of theories of predicative strength</title><title>The Journal of symbolic logic</title><description>We use model-theoretic methods described in [3] to obtain ordinal analyses of a number of theories of first-and second-order arithmetic, whose proof-theoretic ordinals are less than or equal to Γ0.</description><subject>Arithmetic</subject><subject>Induction assumption</subject><subject>Mathematical logic</subject><subject>Mathematical theorems</subject><subject>Modeling</subject><subject>Multilevel models</subject><subject>Natural numbers</subject><subject>Ordinal notation</subject><subject>Parametric models</subject><subject>Predicate logic</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp9kE1LAzEQhoMoWKv4FxYUPK3mO9mbUrQVCyJUPIZ0N7FZt01NUrH_3m136dHLzPDOwzsfAFwieIsJFHeYSS64PAIDVFCSMyn5MRhAiHFOJcKn4CzGGkLICioHYDJbmGzpK9PkaWF8MMmVmQ-VW-km023YRhczb7N915l9vQ6mcqVO7sdkMQWz-kyLc3BidRPNRZ-HYPb0OBtN8unr-Hn0MM1LCmXKOaQQI6zZnBKMoZElJARRXs4tFaQihWVcMEY4FJBjaxHa7WkRxZbt9CG472zXwdemTGZTNq5S6-CWOmyV106N3qe92qc6NgohSQRlAhatxdXB4ntjYlK134T21KgQJxQhUXDeUjcdVQYfYzD2MANBtXu06h_dktcdWcfkwz9Y3mEuJvN7wHT4UlwQwRQfvyk6_mDkZVKoEfkDKUKIPg</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>Avigad, Jeremy</creator><creator>Sommer, Richard</creator><general>Cambridge University Press</general><general>The Association for Symbolic Logic, Inc</general><general>Association for Symbolic Logic</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>EOLOZ</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19990301</creationdate><title>The model-theoretic ordinal analysis of theories of predicative strength</title><author>Avigad, Jeremy ; Sommer, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6040212a5b43220e8c033146cbf473d39f567553607062ff115948f142f57553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Arithmetic</topic><topic>Induction assumption</topic><topic>Mathematical logic</topic><topic>Mathematical theorems</topic><topic>Modeling</topic><topic>Multilevel models</topic><topic>Natural numbers</topic><topic>Ordinal notation</topic><topic>Parametric models</topic><topic>Predicate logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avigad, Jeremy</creatorcontrib><creatorcontrib>Sommer, Richard</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 01</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avigad, Jeremy</au><au>Sommer, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The model-theoretic ordinal analysis of theories of predicative strength</atitle><jtitle>The Journal of symbolic logic</jtitle><date>1999-03-01</date><risdate>1999</risdate><volume>64</volume><issue>1</issue><spage>327</spage><epage>349</epage><pages>327-349</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>We use model-theoretic methods described in [3] to obtain ordinal analyses of a number of theories of first-and second-order arithmetic, whose proof-theoretic ordinals are less than or equal to Γ0.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.2307/2586768</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4812
ispartof The Journal of symbolic logic, 1999-03, Vol.64 (1), p.327-349
issn 0022-4812
1943-5886
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183745709
source Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Arithmetic
Induction assumption
Mathematical logic
Mathematical theorems
Modeling
Multilevel models
Natural numbers
Ordinal notation
Parametric models
Predicate logic
title The model-theoretic ordinal analysis of theories of predicative strength
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20model-theoretic%20ordinal%20analysis%20of%20theories%20of%20predicative%20strength&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=Avigad,%20Jeremy&rft.date=1999-03-01&rft.volume=64&rft.issue=1&rft.spage=327&rft.epage=349&rft.pages=327-349&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.2307/2586768&rft_dat=%3Cjstor_proje%3E2586768%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1634117966&rft_id=info:pmid/&rft_jstor_id=2586768&rfr_iscdi=true