Relative lawlessness in intuitionistic analysis
This paper introduces, as an alternative to the (absolutely) lawless sequences of Kreisel and Troelstra, a notion of choice sequence lawless with respect to a given class D of lawlike sequences. For countable D, the class of D-lawless sequences is comeager in the sense of Baire. If a particular well...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 1987-03, Vol.52 (1), p.68-88 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | 1 |
container_start_page | 68 |
container_title | The Journal of symbolic logic |
container_volume | 52 |
creator | Moschovakis, Joan Rand |
description | This paper introduces, as an alternative to the (absolutely) lawless sequences of Kreisel and Troelstra, a notion of choice sequence lawless with respect to a given class D of lawlike sequences. For countable D, the class of D-lawless sequences is comeager in the sense of Baire. If a particular well-ordered class F of sequences, generated by iterating definability over the continuum, is countable then the F-lawless, sequences satisfy the axiom of open data and the continuity principle for functions from lawless to lawlike sequences, but fail to satisfy Troelstra's extension principle. Classical reasoning is used. |
doi_str_mv | 10.2307/2273863 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183742311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2273863</jstor_id><sourcerecordid>2273863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-70e3d07e9e146cd7e5fcd7052b3b2914775c1c867ab7c431590df9bf6bd029f53</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKf4FwYKXtXls2nulOGmUhCHQ-9CmqaQWtuZpOr-vZGWXQrnAw4P7znnBeAcwWtMIJ9jzEmWkgMwQYKShGVZeggmEGKc0AzhY3DifQ0hZIJmEzBfm0YF-2VmjfpujPdtzJltY4TeBtu11gerZ6pVzc5bfwqOKtV4czb2Kdgs714W90n-tHpY3OaJjjeEhENDSsiNMIimuuSGVbFChgtSYIEo50wjnaVcFVxTgpiAZSWKKi1KiEXFyBTcDLpb19VGB9PrxpZy6-yHcjvZKSsXm3ycjq32jUQoI5xiglCUuNhLfPbGB1l3vYt_eImwgBwxjkSkrgZKu857Z6r9DgTln6FyNDSSlwNZ-9C5f7BkwKJx5mePKfcuU044k-nqWa6XK_GGXx8lJb_IWIGm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290715719</pqid></control><display><type>article</type><title>Relative lawlessness in intuitionistic analysis</title><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Moschovakis, Joan Rand</creator><creatorcontrib>Moschovakis, Joan Rand</creatorcontrib><description>This paper introduces, as an alternative to the (absolutely) lawless sequences of Kreisel and Troelstra, a notion of choice sequence lawless with respect to a given class D of lawlike sequences. For countable D, the class of D-lawless sequences is comeager in the sense of Baire. If a particular well-ordered class F of sequences, generated by iterating definability over the continuum, is countable then the F-lawless, sequences satisfy the axiom of open data and the continuity principle for functions from lawless to lawlike sequences, but fail to satisfy Troelstra's extension principle. Classical reasoning is used.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.2307/2273863</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Axioms ; Choice sequences ; Induction assumption ; Integers ; Intuitionistic type theory ; Mathematical logic ; Mathematical sequences ; Natural numbers ; Numerals ; Reasoning</subject><ispartof>The Journal of symbolic logic, 1987-03, Vol.52 (1), p.68-88</ispartof><rights>Copyright 1987 Association for Symbolic Logic, Inc.</rights><rights>Copyright 1987 Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-70e3d07e9e146cd7e5fcd7052b3b2914775c1c867ab7c431590df9bf6bd029f53</citedby><cites>FETCH-LOGICAL-c307t-70e3d07e9e146cd7e5fcd7052b3b2914775c1c867ab7c431590df9bf6bd029f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2273863$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2273863$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,829,882,27850,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Moschovakis, Joan Rand</creatorcontrib><title>Relative lawlessness in intuitionistic analysis</title><title>The Journal of symbolic logic</title><description>This paper introduces, as an alternative to the (absolutely) lawless sequences of Kreisel and Troelstra, a notion of choice sequence lawless with respect to a given class D of lawlike sequences. For countable D, the class of D-lawless sequences is comeager in the sense of Baire. If a particular well-ordered class F of sequences, generated by iterating definability over the continuum, is countable then the F-lawless, sequences satisfy the axiom of open data and the continuity principle for functions from lawless to lawlike sequences, but fail to satisfy Troelstra's extension principle. Classical reasoning is used.</description><subject>Axioms</subject><subject>Choice sequences</subject><subject>Induction assumption</subject><subject>Integers</subject><subject>Intuitionistic type theory</subject><subject>Mathematical logic</subject><subject>Mathematical sequences</subject><subject>Natural numbers</subject><subject>Numerals</subject><subject>Reasoning</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp9kF1LwzAUhoMoOKf4FwYKXtXls2nulOGmUhCHQ-9CmqaQWtuZpOr-vZGWXQrnAw4P7znnBeAcwWtMIJ9jzEmWkgMwQYKShGVZeggmEGKc0AzhY3DifQ0hZIJmEzBfm0YF-2VmjfpujPdtzJltY4TeBtu11gerZ6pVzc5bfwqOKtV4czb2Kdgs714W90n-tHpY3OaJjjeEhENDSsiNMIimuuSGVbFChgtSYIEo50wjnaVcFVxTgpiAZSWKKi1KiEXFyBTcDLpb19VGB9PrxpZy6-yHcjvZKSsXm3ycjq32jUQoI5xiglCUuNhLfPbGB1l3vYt_eImwgBwxjkSkrgZKu857Z6r9DgTln6FyNDSSlwNZ-9C5f7BkwKJx5mePKfcuU044k-nqWa6XK_GGXx8lJb_IWIGm</recordid><startdate>19870301</startdate><enddate>19870301</enddate><creator>Moschovakis, Joan Rand</creator><general>Cambridge University Press</general><general>Association for Symbolic Logic, Inc</general><general>Association for Symbolic Logic</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>EOLOZ</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19870301</creationdate><title>Relative lawlessness in intuitionistic analysis</title><author>Moschovakis, Joan Rand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-70e3d07e9e146cd7e5fcd7052b3b2914775c1c867ab7c431590df9bf6bd029f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Axioms</topic><topic>Choice sequences</topic><topic>Induction assumption</topic><topic>Integers</topic><topic>Intuitionistic type theory</topic><topic>Mathematical logic</topic><topic>Mathematical sequences</topic><topic>Natural numbers</topic><topic>Numerals</topic><topic>Reasoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moschovakis, Joan Rand</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 01</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moschovakis, Joan Rand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative lawlessness in intuitionistic analysis</atitle><jtitle>The Journal of symbolic logic</jtitle><date>1987-03-01</date><risdate>1987</risdate><volume>52</volume><issue>1</issue><spage>68</spage><epage>88</epage><pages>68-88</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>This paper introduces, as an alternative to the (absolutely) lawless sequences of Kreisel and Troelstra, a notion of choice sequence lawless with respect to a given class D of lawlike sequences. For countable D, the class of D-lawless sequences is comeager in the sense of Baire. If a particular well-ordered class F of sequences, generated by iterating definability over the continuum, is countable then the F-lawless, sequences satisfy the axiom of open data and the continuity principle for functions from lawless to lawlike sequences, but fail to satisfy Troelstra's extension principle. Classical reasoning is used.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.2307/2273863</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4812 |
ispartof | The Journal of symbolic logic, 1987-03, Vol.52 (1), p.68-88 |
issn | 0022-4812 1943-5886 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183742311 |
source | Periodicals Index Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Axioms Choice sequences Induction assumption Integers Intuitionistic type theory Mathematical logic Mathematical sequences Natural numbers Numerals Reasoning |
title | Relative lawlessness in intuitionistic analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20lawlessness%20in%20intuitionistic%20analysis&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=Moschovakis,%20Joan%20Rand&rft.date=1987-03-01&rft.volume=52&rft.issue=1&rft.spage=68&rft.epage=88&rft.pages=68-88&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.2307/2273863&rft_dat=%3Cjstor_proje%3E2273863%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290715719&rft_id=info:pmid/&rft_jstor_id=2273863&rfr_iscdi=true |