Rings which admit elimination of quantifiers
The aim of this paper is to provide an addendum to a paper by Rose with the same title which has appeared in an earlier issue of this Journal [2]. Our new result is: Theorem. A ring of characteristic zero which admits elimination of quantifiers in the language {0, 1, +, ·} is an algebraically closed...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 1981-03, Vol.46 (1), p.56-58 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | 1 |
container_start_page | 56 |
container_title | The Journal of symbolic logic |
container_volume | 46 |
creator | Berline, Chantal |
description | The aim of this paper is to provide an addendum to a paper by Rose with the same title which has appeared in an earlier issue of this Journal [2]. Our new result is: Theorem. A ring of characteristic zero which admits elimination of quantifiers in the language {0, 1, +, ·} is an algebraically closed field. |
doi_str_mv | 10.2307/2273256 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183740718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2273256</jstor_id><sourcerecordid>2273256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-17dc5bbe0e3f3f93c201f9390eb4a6e31061dfc074fecc5d9fa39fa1029e10d13</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKf4FwoKvli9SdqmfVOGbkJVHA58C1mauNSu3ZIU9d_b0bJHHy4HLh_nnnsQOsdwQyiwW0IYJXFygEY4i2gYp2lyiEYAhIRRiskxOnGuBIA4i9IRup6b-tMF3ysjV4Eo1sYHqjJrUwtvmjpodLBtRe2NNsq6U3SkReXU2aBjtHh8eJ_Mwvx1-jS5z0PZBfAhZoWMl0sFimqqMyoJ4E4yUMtIJIpiSHChJbBIKynjItOCdoOBZApDgekY3fW-G9uUSnrVysoUfGPNWthf3gjDJ4t82A5SuopjnFIWAetkjC72FttWOc_LprV1l5pjknXPQ8x21FVPSds4Z5Xe38DAd23yoc2OvOzJ0vnG_oOFPWacVz97TNgvnjDKYp5M3_jseZ5PP5IZf6F_qxiAnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290590578</pqid></control><display><type>article</type><title>Rings which admit elimination of quantifiers</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><creator>Berline, Chantal</creator><creatorcontrib>Berline, Chantal</creatorcontrib><description>The aim of this paper is to provide an addendum to a paper by Rose with the same title which has appeared in an earlier issue of this Journal [2]. Our new result is: Theorem. A ring of characteristic zero which admits elimination of quantifiers in the language {0, 1, +, ·} is an algebraically closed field.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.2307/2273256</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Algebra ; Integers ; Logical theorems ; Mathematical rings ; Mathematical theorems ; Polynomials</subject><ispartof>The Journal of symbolic logic, 1981-03, Vol.46 (1), p.56-58</ispartof><rights>Copyright 1981 Association for Symbolic Logic, Inc.</rights><rights>Copyright 1981 Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-17dc5bbe0e3f3f93c201f9390eb4a6e31061dfc074fecc5d9fa39fa1029e10d13</citedby><cites>FETCH-LOGICAL-c307t-17dc5bbe0e3f3f93c201f9390eb4a6e31061dfc074fecc5d9fa39fa1029e10d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2273256$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2273256$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27846,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Berline, Chantal</creatorcontrib><title>Rings which admit elimination of quantifiers</title><title>The Journal of symbolic logic</title><description>The aim of this paper is to provide an addendum to a paper by Rose with the same title which has appeared in an earlier issue of this Journal [2]. Our new result is: Theorem. A ring of characteristic zero which admits elimination of quantifiers in the language {0, 1, +, ·} is an algebraically closed field.</description><subject>Algebra</subject><subject>Integers</subject><subject>Logical theorems</subject><subject>Mathematical rings</subject><subject>Mathematical theorems</subject><subject>Polynomials</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp9kFFLwzAUhYMoOKf4FwoKvli9SdqmfVOGbkJVHA58C1mauNSu3ZIU9d_b0bJHHy4HLh_nnnsQOsdwQyiwW0IYJXFygEY4i2gYp2lyiEYAhIRRiskxOnGuBIA4i9IRup6b-tMF3ysjV4Eo1sYHqjJrUwtvmjpodLBtRe2NNsq6U3SkReXU2aBjtHh8eJ_Mwvx1-jS5z0PZBfAhZoWMl0sFimqqMyoJ4E4yUMtIJIpiSHChJbBIKynjItOCdoOBZApDgekY3fW-G9uUSnrVysoUfGPNWthf3gjDJ4t82A5SuopjnFIWAetkjC72FttWOc_LprV1l5pjknXPQ8x21FVPSds4Z5Xe38DAd23yoc2OvOzJ0vnG_oOFPWacVz97TNgvnjDKYp5M3_jseZ5PP5IZf6F_qxiAnQ</recordid><startdate>19810301</startdate><enddate>19810301</enddate><creator>Berline, Chantal</creator><general>Cambridge University Press</general><general>Association for Symbolic Logic, Inc</general><general>Association for Symbolic Logic</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>EOLOZ</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19810301</creationdate><title>Rings which admit elimination of quantifiers</title><author>Berline, Chantal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-17dc5bbe0e3f3f93c201f9390eb4a6e31061dfc074fecc5d9fa39fa1029e10d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Algebra</topic><topic>Integers</topic><topic>Logical theorems</topic><topic>Mathematical rings</topic><topic>Mathematical theorems</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berline, Chantal</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 01</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berline, Chantal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rings which admit elimination of quantifiers</atitle><jtitle>The Journal of symbolic logic</jtitle><date>1981-03-01</date><risdate>1981</risdate><volume>46</volume><issue>1</issue><spage>56</spage><epage>58</epage><pages>56-58</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>The aim of this paper is to provide an addendum to a paper by Rose with the same title which has appeared in an earlier issue of this Journal [2]. Our new result is: Theorem. A ring of characteristic zero which admits elimination of quantifiers in the language {0, 1, +, ·} is an algebraically closed field.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.2307/2273256</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4812 |
ispartof | The Journal of symbolic logic, 1981-03, Vol.46 (1), p.56-58 |
issn | 0022-4812 1943-5886 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183740718 |
source | Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics |
subjects | Algebra Integers Logical theorems Mathematical rings Mathematical theorems Polynomials |
title | Rings which admit elimination of quantifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rings%20which%20admit%20elimination%20of%20quantifiers&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=Berline,%20Chantal&rft.date=1981-03-01&rft.volume=46&rft.issue=1&rft.spage=56&rft.epage=58&rft.pages=56-58&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.2307/2273256&rft_dat=%3Cjstor_proje%3E2273256%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290590578&rft_id=info:pmid/&rft_jstor_id=2273256&rfr_iscdi=true |