On subcreative sets and S-reducibility

Subcreative sets, introduced by Blum, are known to coincide with the effectively speedable sets. Subcreative sets are shown to be the complete sets with respect to S-reducibility, a special case of Turing reducibility. Thus a set is effectively speedable exactly when it contains the solution to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 1974-12, Vol.39 (4), p.669-677
Hauptverfasser: Gill, John T., Morris, Paul H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Subcreative sets, introduced by Blum, are known to coincide with the effectively speedable sets. Subcreative sets are shown to be the complete sets with respect to S-reducibility, a special case of Turing reducibility. Thus a set is effectively speedable exactly when it contains the solution to the halting problem in an easily decodable form. Several characterizations of subcreative sets are given, including the solution of an open problem of Blum, and are used to locate the subcreative sets with respect to the complete sets of other reducibilities. It is shown that q-cylindrification is an order-preserving map from the r.e. T-degrees to the r.e. S-degrees. Consequently, T-complete sets are precisely the r.e. sets whose q-cylindrifications are S-complete.
ISSN:0022-4812
1943-5886
DOI:10.2307/2272852