Logic with truth values in A linearly ordered heyting algebra
It is known that the theorems of the intuitionist predicate calculus are exactly those formulas which are valid in every Heyting algebra (that is, pseudo-Boolean algebra). The simplest kind of Heyting algebra is a linearly ordered set. This paper concerns the question of determining all formulas whi...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 1969-01, Vol.34 (3), p.395-408 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 408 |
---|---|
container_issue | 3 |
container_start_page | 395 |
container_title | The Journal of symbolic logic |
container_volume | 34 |
creator | Horn, Alfred |
description | It is known that the theorems of the intuitionist predicate calculus are exactly those formulas which are valid in every Heyting algebra (that is, pseudo-Boolean algebra). The simplest kind of Heyting algebra is a linearly ordered set. This paper concerns the question of determining all formulas which are valid in every linearly ordered Heyting algebra. The question is of interest because it is a particularly simple case intermediate between the intuitionist and classical logics. Also the interpretation of implication is such that in general there exists no nondiscrete Hausdorff topology for which this operation is continuous. |
doi_str_mv | 10.2307/2270905 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183736852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2270905</jstor_id><sourcerecordid>2270905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-ccb0e6e50b6142c131f61fe5a5c073fe2eb7e4f3a94fd1da2e5ee243479ea0613</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFbxKwQUPEX3_yYHQWltFQoqWgUvy2YzaTfGpO6mar-9kZYevcyD4cebNw-hY4LPKcPqglKFUyx2UI-knMUiSeQu6mFMacwTQvfRQQglxlikPOmhy0kzczb6du08av2ym1-mWkKIXB1dR5WrwfhqFTU-Bw95NIdV6-pZZKoZZN4cor3CVAGONtpH09HN8-A2ntyP7wbXk9h2idrY2gyDBIEzSTi1hJFCkgKEERYrVgCFTAEvmEl5kZPcUBAAlDOuUjBYEtZHV2vfhW9KsC0sbeVyvfDuw_iVbozTg-lks91IGSpNSMIUk4mgncXJ1uKze7DVZbP0dZdaE5piyXjKRUedrSnrmxA8FNsbBOu_evWm3o48XZNlaBv_DxavMRda-Nlixr9rqZgSWo4f9dPby_B1NHzQiv0CZUyGkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290634945</pqid></control><display><type>article</type><title>Logic with truth values in A linearly ordered heyting algebra</title><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Horn, Alfred</creator><creatorcontrib>Horn, Alfred</creatorcontrib><description>It is known that the theorems of the intuitionist predicate calculus are exactly those formulas which are valid in every Heyting algebra (that is, pseudo-Boolean algebra). The simplest kind of Heyting algebra is a linearly ordered set. This paper concerns the question of determining all formulas which are valid in every linearly ordered Heyting algebra. The question is of interest because it is a particularly simple case intermediate between the intuitionist and classical logics. Also the interpretation of implication is such that in general there exists no nondiscrete Hausdorff topology for which this operation is continuous.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.2307/2270905</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Algebra ; Axioms ; Equivalence relation ; Heyting algebras ; Homomorphisms ; Mathematical functions ; Mathematical intuitionism ; Mathematical theorems ; Predicate calculus ; Subalgebras</subject><ispartof>The Journal of symbolic logic, 1969-01, Vol.34 (3), p.395-408</ispartof><rights>Copyright 1969 Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-ccb0e6e50b6142c131f61fe5a5c073fe2eb7e4f3a94fd1da2e5ee243479ea0613</citedby><cites>FETCH-LOGICAL-c307t-ccb0e6e50b6142c131f61fe5a5c073fe2eb7e4f3a94fd1da2e5ee243479ea0613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2270905$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2270905$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27869,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Horn, Alfred</creatorcontrib><title>Logic with truth values in A linearly ordered heyting algebra</title><title>The Journal of symbolic logic</title><description>It is known that the theorems of the intuitionist predicate calculus are exactly those formulas which are valid in every Heyting algebra (that is, pseudo-Boolean algebra). The simplest kind of Heyting algebra is a linearly ordered set. This paper concerns the question of determining all formulas which are valid in every linearly ordered Heyting algebra. The question is of interest because it is a particularly simple case intermediate between the intuitionist and classical logics. Also the interpretation of implication is such that in general there exists no nondiscrete Hausdorff topology for which this operation is continuous.</description><subject>Algebra</subject><subject>Axioms</subject><subject>Equivalence relation</subject><subject>Heyting algebras</subject><subject>Homomorphisms</subject><subject>Mathematical functions</subject><subject>Mathematical intuitionism</subject><subject>Mathematical theorems</subject><subject>Predicate calculus</subject><subject>Subalgebras</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1969</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp9kE9Lw0AQxRdRsFbxKwQUPEX3_yYHQWltFQoqWgUvy2YzaTfGpO6mar-9kZYevcyD4cebNw-hY4LPKcPqglKFUyx2UI-knMUiSeQu6mFMacwTQvfRQQglxlikPOmhy0kzczb6du08av2ym1-mWkKIXB1dR5WrwfhqFTU-Bw95NIdV6-pZZKoZZN4cor3CVAGONtpH09HN8-A2ntyP7wbXk9h2idrY2gyDBIEzSTi1hJFCkgKEERYrVgCFTAEvmEl5kZPcUBAAlDOuUjBYEtZHV2vfhW9KsC0sbeVyvfDuw_iVbozTg-lks91IGSpNSMIUk4mgncXJ1uKze7DVZbP0dZdaE5piyXjKRUedrSnrmxA8FNsbBOu_evWm3o48XZNlaBv_DxavMRda-Nlixr9rqZgSWo4f9dPby_B1NHzQiv0CZUyGkA</recordid><startdate>19690101</startdate><enddate>19690101</enddate><creator>Horn, Alfred</creator><general>Cambridge University Press</general><general>Association for Symbolic Logic, Inc</general><general>Association for Symbolic Logic</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>EOLOZ</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19690101</creationdate><title>Logic with truth values in A linearly ordered heyting algebra</title><author>Horn, Alfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-ccb0e6e50b6142c131f61fe5a5c073fe2eb7e4f3a94fd1da2e5ee243479ea0613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1969</creationdate><topic>Algebra</topic><topic>Axioms</topic><topic>Equivalence relation</topic><topic>Heyting algebras</topic><topic>Homomorphisms</topic><topic>Mathematical functions</topic><topic>Mathematical intuitionism</topic><topic>Mathematical theorems</topic><topic>Predicate calculus</topic><topic>Subalgebras</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horn, Alfred</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 01</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horn, Alfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logic with truth values in A linearly ordered heyting algebra</atitle><jtitle>The Journal of symbolic logic</jtitle><date>1969-01-01</date><risdate>1969</risdate><volume>34</volume><issue>3</issue><spage>395</spage><epage>408</epage><pages>395-408</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>It is known that the theorems of the intuitionist predicate calculus are exactly those formulas which are valid in every Heyting algebra (that is, pseudo-Boolean algebra). The simplest kind of Heyting algebra is a linearly ordered set. This paper concerns the question of determining all formulas which are valid in every linearly ordered Heyting algebra. The question is of interest because it is a particularly simple case intermediate between the intuitionist and classical logics. Also the interpretation of implication is such that in general there exists no nondiscrete Hausdorff topology for which this operation is continuous.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.2307/2270905</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4812 |
ispartof | The Journal of symbolic logic, 1969-01, Vol.34 (3), p.395-408 |
issn | 0022-4812 1943-5886 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183736852 |
source | Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algebra Axioms Equivalence relation Heyting algebras Homomorphisms Mathematical functions Mathematical intuitionism Mathematical theorems Predicate calculus Subalgebras |
title | Logic with truth values in A linearly ordered heyting algebra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logic%20with%20truth%20values%20in%20A%20linearly%20ordered%20heyting%20algebra&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=Horn,%20Alfred&rft.date=1969-01-01&rft.volume=34&rft.issue=3&rft.spage=395&rft.epage=408&rft.pages=395-408&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.2307/2270905&rft_dat=%3Cjstor_proje%3E2270905%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290634945&rft_id=info:pmid/&rft_jstor_id=2270905&rfr_iscdi=true |