The undecidability of the Turing machine immortality problem

A Turing Machine (TM) is an abstract, synchronous, deterministic computer with a finite number of internal states. It operates on the set of infinite words, or tapes, over some finite alphabet, scanning exactly one symbol of the tape at a time. (Only a 2-symbol alphabet, consisting of “0” and “|”, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 1966-06, Vol.31 (2), p.219-234
1. Verfasser: Hooper, Philip K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 2
container_start_page 219
container_title The Journal of symbolic logic
container_volume 31
creator Hooper, Philip K.
description A Turing Machine (TM) is an abstract, synchronous, deterministic computer with a finite number of internal states. It operates on the set of infinite words, or tapes, over some finite alphabet, scanning exactly one symbol of the tape at a time. (Only a 2-symbol alphabet, consisting of “0” and “|”, will be considered here, and the scanned symbol of a tape will be distinguished by an underscore.) depending upon its internal state and the symbol under scan, it can perform one or more of the following operations: replace the scanned symbol with a new symbol, focus its attention on an adjacent square, and transfer control to a new state.
doi_str_mv 10.2307/2269811
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183735419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2269811</jstor_id><sourcerecordid>2269811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-90c714664812ce28066b022ec7ffacc478b7375a56e522830a1e9c1ff366ee443</originalsourceid><addsrcrecordid>eNp9kF1LwzAYhYMoOKf4FwoKXlXz1SQFL5ThplgRYfM2pFnqUvuhSQru39vZskuvXjg8nHPeA8A5gteYQH6DMUsFQgdgglJK4kQIdggmEGIcU4HwMTjxvoQQJikVE3C73Jioa9ZG27XKbWXDNmqLKPTqsnO2-YhqpTe2MZGt69YF9Ud8uTavTH0KjgpVeXM23ilYzR-Ws8c4e108ze6zWPeFQpxCzRFlbBevDRaQsbyvYzQvCqU15SLnhCcqYSbBWBCokEk1KgrCmDGUkim4G3z73NLoYDpd2bX8crZWbitbZeVslY3qeEpfSYQE4SShKO0tLvYW353xQZZt55q-tUQ4hTxBCPKeuhoo7VrvnSn2GQjK3bpyXLcnLwey9KF1_2DxgFkfzM8eU-5Tst3Pki3eZPbC6Jw8v0tIfgEpE4Uf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1290751107</pqid></control><display><type>article</type><title>The undecidability of the Turing machine immortality problem</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Hooper, Philip K.</creator><creatorcontrib>Hooper, Philip K.</creatorcontrib><description>A Turing Machine (TM) is an abstract, synchronous, deterministic computer with a finite number of internal states. It operates on the set of infinite words, or tapes, over some finite alphabet, scanning exactly one symbol of the tape at a time. (Only a 2-symbol alphabet, consisting of “0” and “|”, will be considered here, and the scanned symbol of a tape will be distinguished by an underscore.) depending upon its internal state and the symbol under scan, it can perform one or more of the following operations: replace the scanned symbol with a new symbol, focus its attention on an adjacent square, and transfer control to a new state.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.2307/2269811</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alphabets ; Block diagrams ; Immortality ; Integers ; Printing equipment ; Subroutines ; Symbolism ; Turing machines ; Undecidability ; Unsolvability</subject><ispartof>The Journal of symbolic logic, 1966-06, Vol.31 (2), p.219-234</ispartof><rights>Copyright 1966 Association for Symbolic Logic, Inc.</rights><rights>Copyright 1966 Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-90c714664812ce28066b022ec7ffacc478b7375a56e522830a1e9c1ff366ee443</citedby><cites>FETCH-LOGICAL-c307t-90c714664812ce28066b022ec7ffacc478b7375a56e522830a1e9c1ff366ee443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2269811$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2269811$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27846,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Hooper, Philip K.</creatorcontrib><title>The undecidability of the Turing machine immortality problem</title><title>The Journal of symbolic logic</title><description>A Turing Machine (TM) is an abstract, synchronous, deterministic computer with a finite number of internal states. It operates on the set of infinite words, or tapes, over some finite alphabet, scanning exactly one symbol of the tape at a time. (Only a 2-symbol alphabet, consisting of “0” and “|”, will be considered here, and the scanned symbol of a tape will be distinguished by an underscore.) depending upon its internal state and the symbol under scan, it can perform one or more of the following operations: replace the scanned symbol with a new symbol, focus its attention on an adjacent square, and transfer control to a new state.</description><subject>Alphabets</subject><subject>Block diagrams</subject><subject>Immortality</subject><subject>Integers</subject><subject>Printing equipment</subject><subject>Subroutines</subject><subject>Symbolism</subject><subject>Turing machines</subject><subject>Undecidability</subject><subject>Unsolvability</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1966</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp9kF1LwzAYhYMoOKf4FwoKXlXz1SQFL5ThplgRYfM2pFnqUvuhSQru39vZskuvXjg8nHPeA8A5gteYQH6DMUsFQgdgglJK4kQIdggmEGIcU4HwMTjxvoQQJikVE3C73Jioa9ZG27XKbWXDNmqLKPTqsnO2-YhqpTe2MZGt69YF9Ud8uTavTH0KjgpVeXM23ilYzR-Ws8c4e108ze6zWPeFQpxCzRFlbBevDRaQsbyvYzQvCqU15SLnhCcqYSbBWBCokEk1KgrCmDGUkim4G3z73NLoYDpd2bX8crZWbitbZeVslY3qeEpfSYQE4SShKO0tLvYW353xQZZt55q-tUQ4hTxBCPKeuhoo7VrvnSn2GQjK3bpyXLcnLwey9KF1_2DxgFkfzM8eU-5Tst3Pki3eZPbC6Jw8v0tIfgEpE4Uf</recordid><startdate>19660601</startdate><enddate>19660601</enddate><creator>Hooper, Philip K.</creator><general>Cambridge University Press</general><general>Association for Symbolic Logic, Inc</general><general>Association for Symbolic Logic</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>EOLOZ</scope><scope>FKUCP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19660601</creationdate><title>The undecidability of the Turing machine immortality problem</title><author>Hooper, Philip K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-90c714664812ce28066b022ec7ffacc478b7375a56e522830a1e9c1ff366ee443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1966</creationdate><topic>Alphabets</topic><topic>Block diagrams</topic><topic>Immortality</topic><topic>Integers</topic><topic>Printing equipment</topic><topic>Subroutines</topic><topic>Symbolism</topic><topic>Turing machines</topic><topic>Undecidability</topic><topic>Unsolvability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hooper, Philip K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 01</collection><collection>Periodicals Index Online Segment 04</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hooper, Philip K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The undecidability of the Turing machine immortality problem</atitle><jtitle>The Journal of symbolic logic</jtitle><date>1966-06-01</date><risdate>1966</risdate><volume>31</volume><issue>2</issue><spage>219</spage><epage>234</epage><pages>219-234</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>A Turing Machine (TM) is an abstract, synchronous, deterministic computer with a finite number of internal states. It operates on the set of infinite words, or tapes, over some finite alphabet, scanning exactly one symbol of the tape at a time. (Only a 2-symbol alphabet, consisting of “0” and “|”, will be considered here, and the scanned symbol of a tape will be distinguished by an underscore.) depending upon its internal state and the symbol under scan, it can perform one or more of the following operations: replace the scanned symbol with a new symbol, focus its attention on an adjacent square, and transfer control to a new state.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.2307/2269811</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4812
ispartof The Journal of symbolic logic, 1966-06, Vol.31 (2), p.219-234
issn 0022-4812
1943-5886
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183735419
source Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics
subjects Alphabets
Block diagrams
Immortality
Integers
Printing equipment
Subroutines
Symbolism
Turing machines
Undecidability
Unsolvability
title The undecidability of the Turing machine immortality problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20undecidability%20of%20the%20Turing%20machine%20immortality%20problem&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=Hooper,%20Philip%20K.&rft.date=1966-06-01&rft.volume=31&rft.issue=2&rft.spage=219&rft.epage=234&rft.pages=219-234&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.2307/2269811&rft_dat=%3Cjstor_proje%3E2269811%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1290751107&rft_id=info:pmid/&rft_jstor_id=2269811&rfr_iscdi=true